Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer

[1]  Dennis J. Hazelett,et al.  The OncoArray Consortium: A Network for Understanding the Genetic Architecture of Common Cancers , 2016, Cancer Epidemiology, Biomarkers & Prevention.

[2]  A. Whittemore,et al.  Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast–ovarian cancer susceptibility locus , 2016, Nature Communications.

[3]  A. Whittemore,et al.  Genome-Wide Meta-Analyses of Breast, Ovarian, and Prostate Cancer Association Studies Identify Multiple New Susceptibility Loci Shared by at Least Two Cancer Types. , 2016, Cancer discovery.

[4]  Yafang Li,et al.  FastPop: a rapid principal component derived method to infer intercontinental ancestry using genetic data , 2016, BMC Bioinformatics.

[5]  Yurii B. Shvetsov,et al.  Common variants at the CHEK2 gene locus and risk of epithelial ovarian cancer. , 2015, Carcinogenesis.

[6]  Z. Szallasi,et al.  CAUSEL: An epigenome and genome editing pipeline for establishing function of non-coding GWAS variants , 2015, Nature Medicine.

[7]  Simon G. Coetzee,et al.  motifbreakR: an R/Bioconductor package for predicting variant effects at transcription factor binding sites , 2015, Bioinform..

[8]  A. Whittemore,et al.  Shared genetics underlying epidemiological association between endometriosis and ovarian cancer. , 2015, Human molecular genetics.

[9]  Simon G. Coetzee,et al.  Cell-type-specific enrichment of risk-associated regulatory elements at ovarian cancer susceptibility loci. , 2015, Human molecular genetics.

[10]  C. Wijmenga,et al.  Population-specific genotype imputations using minimac or IMPUTE2 , 2015, Nature Protocols.

[11]  Yurii B. Shvetsov,et al.  Genome-wide significant risk associations for mucinous ovarian carcinoma , 2015, Nature Genetics.

[12]  D. Easton,et al.  A risk prediction algorithm for ovarian cancer incorporating BRCA1, BRCA2, common alleles and other familial effects , 2015, Journal of Medical Genetics.

[13]  J. Brenton,et al.  Molecular pathogenesis of ovarian clear cell carcinoma. , 2015, Future oncology.

[14]  B. Kong,et al.  Tubal origin of ovarian endometriosis and clear cell and endometrioid carcinoma. , 2015, American journal of cancer research.

[15]  Yurii B. Shvetsov,et al.  Identification of six new susceptibility loci for invasive epithelial ovarian cancer , 2014, Nature Genetics.

[16]  A. Spurdle,et al.  Most common 'sporadic' cancers have a significant germline genetic component. , 2014, Human molecular genetics.

[17]  I. Hedenfalk,et al.  Molecular Subtyping of Serous Ovarian Tumors Reveals Multiple Connections to Intrinsic Breast Cancer Subtypes , 2014, PloS one.

[18]  Jubilee Brown,et al.  Mucinous Tumors of the Ovary: Current Thoughts on Diagnosis and Management , 2014, Current Oncology Reports.

[19]  Peggy Hall,et al.  The NHGRI GWAS Catalog, a curated resource of SNP-trait associations , 2013, Nucleic Acids Res..

[20]  D. Easton,et al.  Ovarian cancer familial relative risks by tumour subtypes and by known ovarian cancer genetic susceptibility variants , 2013, Journal of Medical Genetics.

[21]  Brooke L. Fridley,et al.  GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer , 2013, Nature Genetics.

[22]  Sebastian M. Armasu,et al.  Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer , 2013, Nature Genetics.

[23]  Sebastian M. Armasu,et al.  Epigenetic analysis leads to identification of HNF1B as a subtype-specific susceptibility gene for ovarian cancer , 2013, Nature Communications.

[24]  W. Chung,et al.  Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk , 2013, PLoS genetics.

[25]  D. Altshuler,et al.  Identification of a BRCA2-Specific Modifier Locus at 6p24 Related to Breast Cancer Risk , 2013, PLoS genetics.

[26]  A. McKenna,et al.  Integrative eQTL-Based Analyses Reveal the Biology of Breast Cancer Risk Loci , 2013, Cell.

[27]  Russell Vang,et al.  Fallopian tube precursors of ovarian low‐ and high‐grade serous neoplasms , 2013, Histopathology.

[28]  Kenny Q. Ye,et al.  An integrated map of genetic variation from 1,092 human genomes , 2012, Nature.

[29]  A. Malpica,et al.  Ovarian low-grade serous carcinoma: a comprehensive update. , 2012, Gynecologic oncology.

[30]  P. Deloukas,et al.  Patterns of Cis Regulatory Variation in Diverse Human Populations , 2012, PLoS genetics.

[31]  D. Easton,et al.  Evaluation of Association Methods for Analysing Modifiers of Disease Risk in Carriers of High‐Risk Mutations , 2012, Genetic epidemiology.

[32]  J. Prat Ovarian carcinomas: five distinct diseases with different origins, genetic alterations, and clinicopathological features , 2012, Virchows Archiv.

[33]  I. Shih,et al.  Papillary Tubal Hyperplasia: The Putative Precursor of Ovarian Atypical Proliferative (Borderline) Serous Tumors, Noninvasive Implants, and Endosalpingiosis , 2011, The American journal of surgical pathology.

[34]  I. Shih,et al.  Telomere length in different histologic types of ovarian carcinoma with emphasis on clear cell carcinoma , 2011, Modern Pathology.

[35]  Benjamin J. Raphael,et al.  Integrated Genomic Analyses of Ovarian Carcinoma , 2011, Nature.

[36]  Andrey A. Shabalin,et al.  Matrix eQTL: ultra fast eQTL analysis via large matrix operations , 2011, Bioinform..

[37]  A. Whittemore,et al.  A genome-wide association study identifies susceptibility loci for ovarian cancer at 2q31 and 8q24 , 2010, Nature Genetics.

[38]  Christiana Kartsonaki,et al.  A locus on 19p13 modifies risk of breast cancer in BRCA1 mutation carriers and is associated with hormone receptor–negative breast cancer in the general population , 2010, Nature Genetics.

[39]  A. Whittemore,et al.  Common variants at 19p13 are associated with susceptibility to ovarian cancer , 2010, Nature Genetics.

[40]  Yun Li,et al.  METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..

[41]  James B. Brown,et al.  An overview of recent developments in genomics and associated statistical methods , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[42]  A. Whittemore,et al.  A genome-wide association study identifies a new ovarian cancer susceptibility locus on 9p22.2 , 2009, Nature Genetics.

[43]  J. Qin,et al.  OB Fold-containing Protein 1 (OBFC1), a Human Homolog of Yeast Stn1, Associates with TPP1 and Is Implicated in Telomere Length Regulation* , 2009, The Journal of Biological Chemistry.

[44]  Michael D. Wilson,et al.  ChIP-seq: using high-throughput sequencing to discover protein-DNA interactions. , 2009, Methods.

[45]  Jean-François Zagury,et al.  Shape-IT: new rapid and accurate algorithm for haplotype inference , 2008, BMC Bioinformatics.

[46]  Wen-Lin Kuo,et al.  Amplification of PVT1 Contributes to the Pathophysiology of Ovarian and Breast Cancer , 2007, Clinical Cancer Research.

[47]  Jon Wakefield,et al.  A Bayesian measure of the probability of false discovery in genetic epidemiology studies. , 2007, American journal of human genetics.

[48]  Howard C. Shen,et al.  Identification and molecular characterization of a new ovarian cancer susceptibility locus at 17q21.31 , 2022 .

[49]  E. Halperin,et al.  Estimating Local Ancestry in Admixed Populations , 2022 .