Hard Horn Design for Quasi-Optical Power Combining Using Solid-State Power Amplifiers

In recent years, there has been significant interest in the use of corrugated, periodic structures to control the wave impedance of a given surface. It has been shown [1] that a quasi-transverse-electromagnetic (TEM) wave can be excited in a waveguide by correctly choosing the impedance at the guide wall. This correctly chosen impedance is referred to as the hard boundary condition. We have taken advantage of this property of the so-called “hard” guide to attempt to create a spatial power combiner/splitter that couples to an array of microstrip patch antennas feeding a bank of monolithic microwave integrated circuit (MMIC) power amplifiers. The hard horn described here employs longitudinal corrugations filled with a low-loss dielectric material along the vertical walls to achieve the hard boundary condition. We believe the use of dielectric-filled corrugations will improve the insertion loss performance over that of a hard guide using dielectric slabs bonded to the guide wall. Additionally, the horn is tapered to its maximum aperture along a cosine curve in order to improve return loss performance. Included in this article is a discussion of the fabrication process of prototype hard horns, measurements of a hard horn prototype, and preliminary modal analysis results.