Identifiability of linear mixed effects models

In mixed effects model, observations are a function of fixed and random effects and an error term. This structure determines a very specific structure for the variances and covariances of these observations. Unfortunately, the specific parameters of this variance/covariance structure might not be identifiable. Nonidentifiability can lead to complications in numerical estimation algorithms or worse, to incorrect or ambiguous inference. We study the identifiability of normal linear mixed effects models. We derive necessary and sufficient conditions of identifiability and we study identifiability in some commonly used variance-covariance structures. The results are particularly timely, given the recent interest in linear mixed effects models within the longitudinal and functional data analysis literature. With that in mind, we extend our discussion to identifiability in models for scalar responses depending on function-valued covariates.

[1]  D. Bates,et al.  Mixed-Effects Models in S and S-PLUS , 2001 .

[2]  Jiming Jiang Linear and Generalized Linear Mixed Models and Their Applications , 2007 .

[3]  Alexander Kukush,et al.  Measurement Error Models , 2011, International Encyclopedia of Statistical Science.

[4]  G. B. Schaalje,et al.  Analysis of Repeated-Measurements Data from Randomized Block Experiments , 1991 .

[5]  Ramon C. Littell,et al.  Modelling covariance structure in the analysis of repeated measures data. , 2000 .

[6]  R. Jennrich,et al.  Unbalanced repeated-measures models with structured covariance matrices. , 1986, Biometrics.

[7]  D. Bates,et al.  Newton-Raphson and EM Algorithms for Linear Mixed-Effects Models for Repeated-Measures Data , 1988 .

[8]  Brady T. West,et al.  Linear Mixed Models: A Practical Guide Using Statistical Software , 2006 .

[9]  Jing Cheng,et al.  Real longitudinal data analysis for real people: Building a good enough mixed model , 2010, Statistics in medicine.

[10]  R C Littell,et al.  Statistical analysis of repeated measures data using SAS procedures. , 1998, Journal of animal science.

[11]  M. Wand,et al.  Semiparametric Regression: Parametric Regression , 2003 .

[12]  S. R. Searle,et al.  Generalized, Linear, and Mixed Models , 2005 .

[13]  H. Müller Functional Modelling and Classification of Longitudinal Data * , 2005 .

[14]  E. Demidenko,et al.  Mixed Models: Theory and Applications (Wiley Series in Probability and Statistics) , 2004 .

[15]  J. Ware,et al.  Random-effects models for longitudinal data. , 1982, Biometrics.

[16]  F. Graybill,et al.  Matrices with Applications in Statistics. , 1984 .

[17]  Gareth M. James Generalized linear models with functional predictors , 2002 .

[18]  Geert Molenberghs,et al.  Linear Mixed Models in Practice: A SAS-Oriented Approach , 1997 .

[19]  F. Graybill,et al.  Matrices with Applications in Statistics. , 1984 .

[20]  G. Molenberghs,et al.  Linear Mixed Models for Longitudinal Data , 2001 .

[21]  M. Kenward,et al.  The Analysis of Designed Experiments and Longitudinal Data by Using Smoothing Splines , 1999 .