Manifold Reconstruction Using Tangential Delaunay Complexes

We give a provably correct algorithm to reconstruct a k-dimensional manifold embedded in d-dimensional Euclidean space. Input to our algorithm is a point sample coming from an unknown manifold. Our approach is based on two main ideas : the notion of tangential Delaunay complex defined in [6,19,20], and the technique of sliver removal by weighting the sample points [13]. Differently from previous methods, we do not construct any subdivision of the embedding d-dimensional space. As a result, the running time of our algorithm depends only linearly on the extrinsic dimension d while it depends quadratically on the size of the input sample, and exponentially on the intrinsic dimension k. To the best of our knowledge, this is the first certified algorithm for manifold reconstruction whose complexity depends linearly on the ambient dimension. We also prove that for a dense enough sample the output of our algorithm is isotopic to the manifold and a close geometric approximation of the manifold.

[1]  D. Donoho,et al.  Hessian Eigenmaps : new locally linear embedding techniques for high-dimensional data , 2003 .

[2]  Herbert Edelsbrunner,et al.  Sliver exudation , 1999, SCG '99.

[3]  Mariette Yvinec,et al.  Algorithmic geometry , 1998 .

[4]  Steve Oudot,et al.  Towards persistence-based reconstruction in euclidean spaces , 2007, SCG '08.

[5]  Xiang-Yang Li Generating well-shaped d-dimensional Delaunay Meshes , 2003, Theor. Comput. Sci..

[6]  Tamal K. Dey,et al.  Manifold reconstruction from point samples , 2005, SODA '05.

[7]  H. Whitney Geometric Integration Theory , 1957 .

[8]  H. Fédérer Geometric Measure Theory , 1969 .

[9]  Stephen Smale,et al.  Finding the Homology of Submanifolds with High Confidence from Random Samples , 2008, Discret. Comput. Geom..

[10]  Jean-Daniel Boissonnat,et al.  A coordinate system associated with points scattered on a surface , 2004, Comput. Aided Des..

[11]  Hongyuan Zha,et al.  Principal Manifolds and Nonlinear Dimension Reduction via Local Tangent Space Alignment , 2002, ArXiv.

[12]  J. Boissonnat,et al.  Algorithmic Geometry: Frontmatter , 1998 .

[13]  Steve Oudot,et al.  Provably good sampling and meshing of surfaces , 2005, Graph. Model..

[14]  H. Zha,et al.  Principal manifolds and nonlinear dimensionality reduction via tangent space alignment , 2004, SIAM J. Sci. Comput..

[15]  Joachim Giesen,et al.  Shape Dimension and Intrinsic Metric from Samples of Manifolds , 2004, Discret. Comput. Geom..

[16]  Joachim Giesen,et al.  Shape dimension and intrinsic metric from samples of manifolds with high co-dimension , 2003, SCG '03.

[17]  Yajun Wang,et al.  Provable Dimension Detection Using Principal Component Analysis , 2008, Int. J. Comput. Geom. Appl..

[18]  C. Rourke,et al.  Introduction to Piecewise-Linear Topology , 1972 .

[19]  J. Fu,et al.  Convergence of curvatures in secant approximations , 1993 .

[20]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[21]  Franz Aurenhammer,et al.  Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..

[22]  R. Ho Algebraic Topology , 2022 .

[23]  Richard Nock,et al.  On Bregman Voronoi diagrams , 2007, SODA '07.

[24]  Meenakshisundaram Gopi,et al.  Surface Reconstruction based on Lower Dimensional Localized Delaunay Triangulation , 2000, Comput. Graph. Forum.

[25]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1988, SCG '88.

[26]  D. Donoho,et al.  Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[27]  G. E. Bredon Topology and geometry , 1993 .

[28]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[29]  Mariette Yvinec,et al.  Locally uniform anisotropic meshing , 2008, SCG '08.

[30]  William S. Massey,et al.  Algebraic Topology: An Introduction , 1977 .

[31]  Yajun Wang,et al.  Provable dimension detection using principal component analysis , 2005, Symposium on Computational Geometry.

[32]  Daniel Freedman,et al.  Efficient Simplicial Reconstructions of Manifolds from Their Samples , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  B. Dundas,et al.  DIFFERENTIAL TOPOLOGY , 2002 .

[34]  Jonathan Richard Shewchuk,et al.  Star splaying: an algorithm for repairing delaunay triangulations and convex hulls , 2005, SCG.

[35]  David Cohen-Steiner,et al.  A greedy Delaunay-based surface reconstruction algorithm , 2004, The Visual Computer.

[36]  Ronald R. Coifman,et al.  Diffusion Maps, Spectral Clustering and Eigenfunctions of Fokker-Planck Operators , 2005, NIPS.

[37]  Julia Flötotto,et al.  A Coordinate System associated to a Point Cloud issued from a Manifold: Definition, Properties and Applications. (Un système de coordonnées associé à un échantillon de points d'une variété: définition, propriétés et applications) , 2003 .

[38]  Vin de Silva,et al.  On the Local Behavior of Spaces of Natural Images , 2007, International Journal of Computer Vision.

[39]  W ShorPeter,et al.  Applications of random sampling in computational geometry, II , 1989 .

[40]  H. Sebastian Seung,et al.  The Manifold Ways of Perception , 2000, Science.

[41]  Mikhail Belkin,et al.  Discrete laplace operator on meshed surfaces , 2008, SCG '08.

[42]  Frédéric Chazal,et al.  Smooth manifold reconstruction from noisy and non-uniform approximation with guarantees , 2008, Comput. Geom..

[43]  Herbert Edelsbrunner,et al.  Sliver exudation , 2000, J. ACM.

[44]  Jean-Daniel Boissonnat,et al.  Incremental construction of the delaunay triangulation and the delaunay graph in medium dimension , 2009, SCG '09.

[45]  Franz Aurenhammer,et al.  An optimal algorithm for constructing the weighted voronoi diagram in the plane , 1984, Pattern Recognit..

[46]  Leonidas J. Guibas,et al.  Manifold Reconstruction in Arbitrary Dimensions Using Witness Complexes , 2007, SCG '07.

[47]  Stefan Funke,et al.  Smooth-surface reconstruction in near-linear time , 2002, SODA '02.

[48]  Mikhail Belkin,et al.  Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering , 2001, NIPS.

[49]  Sunghee Choi,et al.  A simple algorithm for homeomorphic surface reconstruction , 2000, SCG '00.

[50]  Joachim Giesen,et al.  Delaunay Triangulation Based Surface Reconstruction , 2006 .

[51]  Tamal K. Dey,et al.  Curve and Surface Reconstruction , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[52]  Bernard Chazelle,et al.  An optimal convex hull algorithm in any fixed dimension , 1993, Discret. Comput. Geom..

[53]  Ann B. Lee,et al.  Diffusion maps and coarse-graining: a unified framework for dimensionality reduction, graph partitioning, and data set parameterization , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.