Statistical elimination of spectral features with large between-run variation enhances quantitative protein-level conclusions in experiments with data-independent spectral acquisition

Background Many proteomic investigations summarize the quantitative information across multiple spectral features into protein-level conclusions. Data-independent spectral acquisition (DIA) now generates a lot of interest, as it allows us to quantify many spectral features in a single run. However, the disadvantage of DIA experiments as compared, e.g., to Selected Reaction Monitoring (SRM) is that the features are subject to interferences and noise. We argue that between-run variation provides an additional insight for distinguishing good-quality and noisy DIA features. To appropriately use the quantitative between-run variation, it is important to account for the properties experimental design, and distinguish random artifacts from the biological changes. We have previously proposed a method (Chang et al., ASMS 2013) that accounts for the experimental design to eliminate features with low information content.