String Dual to Free N=4 Supersymmetric Yang-Mills Theory.

We propose a worldsheet description for the AdS_{5}×S^{5} string theory dual to large N, free N=4 supersymmetric Yang-Mills theory in four dimensions. The worldsheet theory is a natural generalization of the recently investigated tensionless string on AdS_{3}×S^{3}×T^{4}. As in the case of AdS_{3} it has a free field description, with spectrally flowed sectors, and is closely related to an (ambi-)twistor string theory. Here, however, we view it as a critical N=4 (closed) string background. We argue that the corresponding worldsheet gauge constraints reduce the degrees of freedom to a finite number of oscillators (string bits) in each spectrally flowed sector. Imposing a set of residual gauge constraints on this reduced oscillator Fock space then determines the physical spectrum of the string theory. Quite remarkably, we find that this prescription reproduces precisely the entire planar spectrum-of single trace operators-of the free supersymmetric Yang-Mills theory.

[1]  Rafael I. Nepomechie,et al.  Review of AdS/CFT Integrability: An Overview , 2010, Letters in Mathematical Physics.

[2]  G. Arutyunov,et al.  Foundations of the AdS5 × S5 superstring: I , 2009, 0901.4937.

[3]  Shlomo S. Razamat,et al.  On a worldsheet dual of the Gaussian matrix model , 2008, 0803.2681.

[4]  P. Goddard,et al.  Tree and Loop Amplitudes in Open Twistor String Theory , 2007, hep-th/0703054.

[5]  L. Alday,et al.  Towards a string bit formulation of = 4 super Yang-Mills , 2005, hep-th/0510264.

[6]  H. Samtleben,et al.  Higher Spin Symmetry and N = 4 SYM , 2004, hep-th/0405057.

[7]  E. Witten Perturbative Gauge Theory as a String Theory in Twistor Space , 2003, hep-th/0312171.

[8]  H. Samtleben,et al.  On the spectrum of AdS/CFT beyond supergravity , 2003, hep-th/0310292.

[9]  H. Samtleben,et al.  On stringy AdS5 × S5 and higher spin holography , 2003, hep-th/0305052.

[10]  N. Beisert The Dilatation Operator of N=4 Super Yang-Mills Theory and Integrability , 2004, hep-th/0407277.

[11]  J. Maldacena,et al.  Strings in flat space and pp waves from ${\cal N}=4$ Super Yang Mills , 2002, hep-th/0202021.

[12]  B. Sundborg,et al.  Free large N supersymmetric Yang-Mills theory as a string theory , 2000, hep-th/0002189.

[13]  J. Maldacena,et al.  Strings in AdS_3 and the SL(2,R) WZW Model. Part 1: The spectrum , 2000, hep-th/0001053.

[14]  E. Witten,et al.  Conformal Field Theory of AdS Background with Ramond-Ramond Flux , 1999, hep-th/9902098.

[15]  N. Ohta,et al.  Universal string and small N = 4 superstring , 1995, hep-th/9504099.

[16]  N. Berkovits Covariant quantization of the Green-Schwarz superstring in a Calabi-Yau background , 1994, hep-th/9404162.

[17]  M Gunaydin,et al.  The spectrum of the S5 compactification of the chiral N=2, D=10 supergravity and the unitary supermultiplets of U(2,2/4) , 1985 .