New PARSEC evolutionary tracks of massive stars at low metallicity: testing canonical stellar evolution in nearby star-forming dwarf galaxies

We extend the {\sl\,PARSEC} library of stellar evolutionary tracks by computing new models of massive stars, from 14\Msun to 350\Msun. The input physics is the same used in the {\sl\,PARSEC}~V1.1 version, but for the mass-loss rate which is included by considering the most recent updates in literature. We focus on low metallicity, $Z$=0.001 and $Z$=0.004, for which the metal poor dwarf irregular star forming galaxies, Sextans A, WLM and NCG6822, provide simple but powerful workbenches. The models reproduce fairly well the observed CMDs but the stellar colour distributions indicate that the predicted blue loop is not hot enough in models with canonical extent of overshooting. In the framework of a mild extended mixing during central hydrogen burning, the only way to reconcile the discrepancy is to enhance the overshooting at the base of the convective envelope (EO) during the first dredge-UP. The mixing scales required to reproduce the observed loops, EO=2\HP or EO=4\HP, are definitely larger than those derived from, e.g., the observed location of the RGB bump in low mass stars. This effect, if confirmed, would imply a strong dependence of the mixing scale below the formal Schwarzschild border, on the stellar mass or luminosity. Reproducing the features of the observed CMDs with standard values of envelope overshooting would require a metallicity significantly lower than the values measured in these galaxies. Other quantities, such as the star formation rate and the initial mass function, are only slightly sensitive to this effect. Future investigations will consider other metallicities and different mixing schemes.

[1]  Mauro Barbieri,et al.  Improving PARSEC models for very low mass stars , 2014, 1409.0322.

[2]  G. Meynet,et al.  Evolution of surface CNO abundances in massive stars , 2014, 1404.1020.

[3]  G. Torres,et al.  ABSOLUTE PROPERTIES OF THE ECLIPSING BINARY SYSTEM AQ SERPENTIS: A STRINGENT TEST OF CONVECTIVE CORE OVERSHOOTING IN STELLAR EVOLUTION MODELS , 2013, 1312.1352.

[4]  G. Meynet,et al.  The puzzle of the CNO abundances of α Cygni variables resolved by the Ledoux criterion , 2013, 1311.4744.

[5]  F. Martins,et al.  A comparison of evolutionary tracks for single Galactic massive stars , 2013, 1310.7218.

[6]  G. Meynet,et al.  The evolution of Red Supergiants at very low metallicity , 2013 .

[7]  É. Depagne,et al.  Massive stars at low metallicity - Evolution and surface abundances of O dwarfs in the SMC , 2013, 1304.6923.

[8]  A. Noels,et al.  On the evidence of extra mixing in models of 8 M computed with the new solar abundances , 2013 .

[9]  L. Girardi,et al.  Red Giant evolution and specific problems , 2013, 1301.7687.

[10]  Ghina M. Halabi,et al.  THE EFFECT OF THE 14N(p, γ)15O REACTION ON THE BLUE LOOPS IN INTERMEDIATE-MASS STARS , 2012 .

[11]  L. Bianchi,et al.  A HUBBLE SPACE TELESCOPE TREASURY STUDY OF STAR-FORMING REGIONS IN THE LOCAL GROUP. II. YOUNG STELLAR POPULATIONS IN M31 , 2012 .

[12]  N. Langer,et al.  Mass-loss predictions for evolved very metal-poor massive stars , 2012, 1209.5934.

[13]  L. Girardi,et al.  parsec: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code , 2012, 1208.4498.

[14]  L. F. Sibbons,et al.  The AGB population of NGC 6822: distribution and the C/M ratio from JHK photometry , 2012, 1202.3285.

[15]  Paul W. Hodge,et al.  A TREASURY STUDY OF STAR-FORMING REGIONS IN THE LOCAL GROUP. I. HST PHOTOMETRY OF YOUNG POPULATIONS IN SIX DWARF GALAXIES , 2012 .

[16]  P. Wood,et al.  EVOLUTION AND NUCLEOSYNTHESIS OF ASYMPTOTIC GIANT BRANCH STARS IN THREE MAGELLANIC CLOUD CLUSTERS , 2011, 1111.1722.

[17]  S. Woosley,et al.  LONG GAMMA-RAY TRANSIENTS FROM COLLAPSARS , 2011, 1110.3842.

[18]  N. Langer,et al.  Wind modelling of very massive stars up to 300 solar masses , 2011, 1105.0556.

[19]  J. Christensen-Dalsgaard,et al.  A more realistic representation of overshoot at the base of the solar convective envelope as seen by helioseismology , 2011, 1102.0235.

[20]  Ryan M. Ferguson,et al.  THE JINA REACLIB DATABASE: ITS RECENT UPDATES AND IMPACT ON TYPE-I X-RAY BURSTS , 2010, The Astrophysical Journal Supplement Series.

[21]  T. Lebzelter,et al.  The pulsation of AGB stars in the Magellanic Cloud clusters NGC 1978 and 419 , 2010, 1006.3121.

[22]  Bernd Freytag,et al.  Solar Chemical Abundances Determined with a CO5BOLD 3D Model Atmosphere , 2010, 1003.1190.

[23]  P. Morel,et al.  Survival of a convective core in low-mass solar-like pulsator HD 203608 , 2010, 1002.3461.

[24]  L. Girardi,et al.  Scaled solar tracks and isochrones in a large region of the Z-Y plane. II. From 2.5 to 20 solar masses , 2009, 0911.2419.

[25]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[26]  Austria,et al.  Low-temperature gas opacity. ÆSOPUS: a versatile and quick computational tool , 2009, 0907.3248.

[27]  L. Girardi,et al.  Discovery of two distinct red clumps in NGC 419: a rare snapshot of a cluster at the onset of degeneracy , 2009, 0901.0773.

[28]  R. Kudritzki,et al.  The Araucaria Project: The Local Group Galaxy WLM—Distance and Metallicity from Quantitative Spectroscopy of Blue Supergiants , 2008, 0805.3555.

[29]  W. Hamann,et al.  Mass loss from late-type WN stars and its Z-dependence: very massive stars approaching the Eddington limit , 2008, 0803.0866.

[30]  L. Girardi,et al.  THE ACS NEARBY GALAXY SURVEY TREASURY , 2007, 0905.3737.

[31]  Belgium,et al.  Evolution of asymptotic giant branch stars. II. Optical to far-infrared isochrones with improved TP- , 2007, 0711.4922.

[32]  S. Nozawa,et al.  The Second Born Corrections to the Electrical and Thermal Conductivities of Dense Matter in the Liquid Metal Phase , 2007, 0708.2967.

[33]  J. Rhee,et al.  The evolved asymptotic giant branch stars in the central bar of the dwarf irregular galaxy NGC 6822 , 2006 .

[34]  R. Kudritzki,et al.  The Araucaria Project: VLT Spectra of Blue Supergiants in WLM— Classification and First Abundances , 2006, astro-ph/0605640.

[35]  L. Bianchi,et al.  The Recent Star Formation in NGC 6822 from Hubble Space Telescope Imaging , 2006, astro-ph/0605345.

[36]  R. Kudritzki,et al.  The Araucaria Project: An Accurate Distance to the Local Group Galaxy NGC 6822 from Near-Infrared Photometry of Cepheid Variables , 2006, astro-ph/0605231.

[37]  E. Hatziminaoglou,et al.  Star counts in the Galaxy - Simulating from very deep to very shallow photometric surveys with the TRILEGAL code , 2005, astro-ph/0504047.

[38]  Garching,et al.  Influence of two updated nuclear reaction rates on the evolution of low and intermediate mass stars , 2005, astro-ph/0503408.

[39]  E. Grebel,et al.  Spectrophotometry of Sextans A and B: Chemical Abundances of H II Regions and Planetary Nebulae , 2005, astro-ph/0502562.

[40]  K. Venn,et al.  Investigating the Possible Anomaly between Nebular and Stellar Oxygen Abundances in the Dwarf Irregular Galaxy WLM , 2004, astro-ph/0410640.

[41]  H. Habing,et al.  Near-IR observations of NGC 6822: AGB stars, distance, metallicity and structure , 2004, astro-ph/0409294.

[42]  Yanshuo Li,et al.  Blue loops of intermediate mass stars: II. Metallicity and blue loops , 2004 .

[43]  R. Kudritzki,et al.  First Stellar Abundances in the Dwarf Irregular Galaxy Sextans A , 2004, astro-ph/0401411.

[44]  C. Prieto,et al.  Line formation in solar granulation IV. (O I), O I and OH lines and the photospheric O abundance , 2003, astro-ph/0312290.

[45]  S. Smartt,et al.  The Chemical Composition of Two Supergiants in the Dwarf Irregular Galaxy WLM , 2003, astro-ph/0306160.

[46]  T. Davidge The Metallicity of the Red Giant Branch in the Disk of NGC 6822 , 2003, astro-ph/0304199.

[47]  M. Mateo,et al.  Deep Hubble Space Telescope Imaging of Sextans A. III. The Star Formation History , 2003, astro-ph/0304098.

[48]  L. Girardi,et al.  Theoretical isochrones in several photometric systems I. Johnson-Cousins-Glass, HST/WFPC2, HST/NICMOS, Washington, and ESO Imaging Survey filter sets , 2002, astro-ph/0205080.

[49]  E. Skillman,et al.  The Ratio of Blue to Red Supergiants in Sextans A from Hubble Space Telescope Imaging , 2002 .

[50]  M. Irwin,et al.  Using the Ca ii triplet to trace abundance variations in individual red giant branch stars in three nearby galaxies , 2001, astro-ph/0107022.

[51]  G. Chabrier The Galactic disk mass-budget : I. stellar mass-function and density , 2001, astro-ph/0107018.

[52]  P. Massey,et al.  The Massive Star Content of NGC 6822: Ground-based andHubble Space Telescope Photometry , 2001 .

[53]  London,et al.  Mass-loss predictions for O and B stars as a function of metallicity , 2001, astro-ph/0101509.

[54]  S. Smartt,et al.  First Stellar Abundances in NGC 6822 from VLT-UVES and Keck-HIRES Spectroscopy , 2000, astro-ph/0009213.

[55]  N. Langer,et al.  Presupernova Evolution of Rotating Massive Stars. II. Evolution of the Surface Properties , 2000, astro-ph/0005110.

[56]  L. Girardi,et al.  Evolutionary tracks and isochrones for low- and intermediate-mass stars: From 0.15 to 7 , and from to 0.03 , 1999, astro-ph/9910164.

[57]  Alessandro Bressan,et al.  Modeling the Effects of Dust on Galactic Spectral Energy Distributions from the Ultraviolet to the Millimeter Band , 1998 .

[58]  K. Gordon,et al.  A Reanalysis of the Ultraviolet Extinction from Interstellar Dust in the Large Magellanic Cloud , 1998, astro-ph/9811036.

[59]  N. Grevesse,et al.  Standard Solar Composition , 1998 .

[60]  K. Gordon,et al.  Starburst-like Dust Extinction in the Small Magellanic Cloud , 1998, astro-ph/9802003.

[61]  Forrest J. Rogers,et al.  Updated Opal Opacities , 1996 .

[62]  B. Miller,et al.  H II Regions in Four Galaxies in and near the Local Group , 1995 .

[63]  M. Richer,et al.  Oxygen abundances in diffuse ellipticals and the metallicity-luminosity relations for dwarf galaxies , 1995 .

[64]  A. Kinney,et al.  Dust extinction of the stellar continua in starburst galaxies: The Ultraviolet and optical extinction law , 1994 .

[65]  A. Weiss,et al.  Standard and Nonstandard Plasma Neutrino Emission Revisited , 1993, astro-ph/9309014.

[66]  W. M. Brunish,et al.  Evolution of Cepheids. I - The effects of an enhanced C-12(alpha, gamma)O-16 rate , 1990 .

[67]  R. Kennicutt,et al.  Oxygen Abundances in Nearby Dwarf Irregular Galaxies , 1989 .

[68]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[69]  J. Melnick,et al.  Abundances in southern Local Group dwarf irregular galaxies , 1989 .

[70]  N. Itoh,et al.  Neutrino Energy Loss in Stellar Interiors , 1985 .

[71]  N. Itoh,et al.  Neutrino-pair bremsstrahlung in dense stars. I: Liquid metal case , 1983 .

[72]  M. Edmunds,et al.  On the composition of HII regions in southern galaxies. II. NGC 6822 and 1313. , 1980 .

[73]  R. Humphreys,et al.  Studies of luminous stars in nearby galaxies. III. Comments on the evolution of the most massive stars in the Milky Way and the large magellanic cloud , 1979 .

[74]  M. S. Cooper,et al.  Screening factors for nuclear reactions. I. General theory , 1973 .

[75]  H. E. DeWitt,et al.  Screening Factors for Nuclear Reactions. 11. Intermediate Screen-Ing and Astrophysical Applications , 1973 .

[76]  B. Freytag,et al.  in Modelling of Stellar Atmospheres , 2004 .

[77]  C. Chiosi,et al.  On the evolution of obstars from the main sequence to the Helium exhaustion phase , 1970 .

[78]  E. Böhm-Vitense,et al.  Über die Wasserstoffkonvektionszone in Sternen verschiedener Effektivtemperaturen und Leuchtkräfte. Mit 5 Textabbildungen , 1958 .