Ring–Chain Competition in Supramolecular Polymerization Directed by Molecular Recognition of the Bisporphyrin Cleft

Increasing interest in innovative supramolecular materials has spurred efforts to develop head-to-tail monomers possessing a host moiety as a head and a guest moiety as a tail, making them capable ...

[1]  Y. Takashima,et al.  Solvent-Free Photoresponsive Artificial Muscles Rapidly Driven by Molecular Machines. , 2018, Journal of the American Chemical Society.

[2]  S. Kihara,et al.  Facile Synthesis of an Eight-Armed Star-Shaped Polymer via Coordination-Driven Self-Assembly of a Four-Armed Cavitand. , 2018, ACS macro letters.

[3]  C. Fonseca Guerra,et al.  Impact of Conformational Effects on the Ring-Chain Equilibrium of Hydrogen-Bonded Dinucleosides. , 2018, Chemistry.

[4]  Toshiaki Ikeda,et al.  Supramolecular Copolymerization by Sequence Reorganization of a Supramolecular Homopolymer. , 2018, Angewandte Chemie.

[5]  T. Haino,et al.  Majority-Rules Effect and Allostery in Molecular Recognition of Calix[4]arene-Based Triple-Stranded Metallohelicates. , 2018, Chemistry.

[6]  V. Lynch,et al.  Supramolecular Properties of a Monocarboxylic Acid-Functionalized "Texas-Sized" Molecular Box. , 2018, Journal of the American Chemical Society.

[7]  T. Haino,et al.  A Supramolecular Polymer Network of Graphene Quantum Dots. , 2018, Angewandte Chemie.

[8]  H. Gibson,et al.  Supramolecular Pseudorotaxane Polymers from Biscryptands and Bisparaquats. , 2018, Journal of the American Chemical Society.

[9]  Dong Sub Kim,et al.  Control over multiple molecular states with directional changes driven by molecular recognition , 2018, Nature Communications.

[10]  Takuzo Aida,et al.  Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking , 2018, Science.

[11]  Zhongxing Zhang,et al.  Supramolecular Cross-Linking and Gelation of Conjugated Polycarbazoles via Hydrogen Bond Assisted Molecular Tweezer/Guest Complexation , 2017 .

[12]  T. Haino,et al.  Sequence-controlled supramolecular terpolymerization directed by specific molecular recognitions , 2017, Nature Communications.

[13]  Yifei Han,et al.  Photoresponsive Supramolecular Polymer Networks via Hydrogen Bond Assisted Molecular Tweezer/Guest Complexation. , 2017, ACS macro letters.

[14]  T. Haino,et al.  Supramolecular Graft Copolymerization of a Polyester by Guest-Selective Encapsulation of a Self-Assembled Capsule. , 2017, Angewandte Chemie.

[15]  Y. Takashima,et al.  Self-Healing Materials Formed by Cross-Linked Polyrotaxanes with Reversible Bonds , 2016 .

[16]  Yifei Han,et al.  Donor–Acceptor-Type Supramolecular Polymers Derived from Robust yet Responsive Heterodimeric Tweezers , 2016 .

[17]  Toshiaki Ikeda,et al.  Cooperative Self-Assembly of Carbazole Derivatives Driven by Multiple Dipole-Dipole Interactions. , 2016, The Journal of organic chemistry.

[18]  Akira Harada,et al.  Fast response dry-type artificial molecular muscles with [c2]daisy chains. , 2016, Nature chemistry.

[19]  Toshiaki Ikeda,et al.  Photoresponsive Toroidal Nanostructure Formed by Self-Assembly of Azobenzene-Functionalized Tris(phenylisoxazolyl)benzene. , 2016, Organic letters.

[20]  David Schmidt,et al.  Perylene Bisimide Dye Assemblies as Archetype Functional Supramolecular Materials. , 2016, Chemical reviews.

[21]  F. Würthner,et al.  Impact of Alkyl Spacer Length on Aggregation Pathways in Kinetically Controlled Supramolecular Polymerization. , 2016, Journal of the American Chemical Society.

[22]  Yukiteru Katsumoto,et al.  Supramolecular Porphyrin Copolymer Assembled through Host-Guest Interactions and Metal-Ligand Coordination. , 2015, Angewandte Chemie.

[23]  S. C. Jones,et al.  Megasupramolecules for safer, cleaner fuel by end association of long telechelic polymers , 2015, Science.

[24]  Sundus Erbas-Cakmak,et al.  Artificial Molecular Machines , 2015, Chemical reviews.

[25]  S. Yamago,et al.  Supramolecular fullerene polymers and networks directed by molecular recognition between calix[5]arene and C60. , 2014, Chemistry.

[26]  J. Sessler,et al.  Calix[4]pyrrole-based ion pair receptors. , 2014, Accounts of chemical research.

[27]  Feng Wang,et al.  Responsive supramolecular polymers based on the bis[alkynylplatinum(II)] terpyridine molecular tweezer/arene recognition motif. , 2014, Angewandte Chemie.

[28]  J. F. Stoddart,et al.  Rotaxane-based molecular muscles. , 2014, Accounts of chemical research.

[29]  Sean Xiao‐An Zhang,et al.  Electrospun nanofibers and multi-responsive supramolecular assemblies constructed from a pillar[5]arene-based receptor. , 2013, Chemical communications.

[30]  Dong Sub Kim,et al.  Three distinct equilibrium states via self-assembly: simple access to a supramolecular ion-controlled NAND logic gate. , 2013, Journal of the American Chemical Society.

[31]  Yanyan Zhang,et al.  Supramolecular polymers with tunable topologies via hierarchical coordination-driven self-assembly and hydrogen bonding interfaces , 2013, Proceedings of the National Academy of Sciences.

[32]  Xiao‐Yu Hu,et al.  Pillar[5]arene-based supramolecular polypseudorotaxane polymer networks constructed by orthogonal self-assembly , 2013 .

[33]  Toshiaki Ikeda,et al.  Photoresponsive two-component organogelators based on trisphenylisoxazolylbenzene. , 2013, Organic & biomolecular chemistry.

[34]  H. Tian,et al.  Light-driven linear helical supramolecular polymer formed by molecular-recognition-directed self-assembly of bis(p-sulfonatocalix[4]arene) and pseudorotaxane. , 2013, Journal of the American Chemical Society.

[35]  V. Lynch,et al.  "Texas-sized" molecular boxes: building blocks for the construction of anion-induced supramolecular species via self-assembly. , 2013, Journal of the American Chemical Society.

[36]  R. Eritja,et al.  Efficient self-assembly in water of long noncovalent polymers by nucleobase analogues. , 2013, Journal of the American Chemical Society.

[37]  Xiao‐Yu Hu,et al.  Highly Controllable Ring–Chain Equilibrium in Quadruply Hydrogen Bonded Supramolecular Polymers , 2012 .

[38]  T. Ogoshi,et al.  Supramolecular polymers with alternating pillar[5]arene and pillar[6]arene units from a highly selective multiple host–guest complexation system and monofunctionalized pillar[6]arene , 2012 .

[39]  T. Kawai,et al.  Circular dichroism and circularly polarized luminescence triggered by self-assembly of tris(phenylisoxazolyl)benzenes possessing a perylenebisimide moiety. , 2012, Chemical communications.

[40]  Toshiaki Ikeda,et al.  Supramolecular polymerization triggered by molecular recognition between bisporphyrin and trinitrofluorenone. , 2012, Angewandte Chemie.

[41]  Dong Sub Kim,et al.  Chemoresponsive alternating supramolecular copolymers created from heterocomplementary calix[4]pyrroles , 2011, Proceedings of the National Academy of Sciences.

[42]  Feihe Huang,et al.  Formation of a cyclic dimer containing two mirror image monomers in the solid state controlled by van der Waals forces. , 2011, Organic letters.

[43]  Zhan-Ting Li,et al.  Highly stable chiral (A)6-B supramolecular copolymers: a multivalency-based self-assembly process. , 2011, Journal of the American Chemical Society.

[44]  C. Böttcher,et al.  Switchable supramolecular polymers from the self-assembly of a small monomer with two orthogonal binding interactions. , 2011, Journal of the American Chemical Society.

[45]  F. Würthner,et al.  Hydrogen-Bond-Directed Formation of Supramolecular Polymers Incorporating Head-to-Tail Oriented Dipolar Merocyanine Dyes , 2011 .

[46]  Y. Takashima,et al.  Double-threaded dimer and supramolecular oligomer formed by stilbene modified cyclodextrin: effect of acyl migration and photostimuli. , 2011, The Journal of organic chemistry.

[47]  Akira Harada,et al.  Macroscopic self-assembly through molecular recognition. , 2011, Nature chemistry.

[48]  E. W. Meijer,et al.  Macrocyclization of enzyme-based supramolecular polymers† , 2010 .

[49]  Y. Takashima,et al.  Social self-sorting: alternating supramolecular oligomer consisting of isomers. , 2009, Journal of the American Chemical Society.

[50]  T. Fujii,et al.  Supramolecular polymer formed by reversible self-assembly of tetrakisporphyrin , 2009, Proceedings of the National Academy of Sciences.

[51]  Albert P H J Schenning,et al.  Supramolecular polymerization. , 2009, Chemical reviews.

[52]  E. W. Meijer,et al.  Materials science: Supramolecular polymers , 2008, Nature.

[53]  L. Sánchez,et al.  An electroactive dynamically polydisperse supramolecular dendrimer. , 2008, Journal of the American Chemical Society.

[54]  Wesley R Browne,et al.  Making molecular machines work , 2006, Nature nanotechnology.

[55]  E. W. Meijer,et al.  A selectivity-driven supramolecular polymerization of an AB monomer. , 2006, Angewandte Chemie.

[56]  Y. Fukazawa,et al.  Supramolecular nano networks formed by molecular-recognition-directed self-assembly of ditopic calix[5]arene and dumbbell [60]fullerene. , 2005, Journal of the American Chemical Society.

[57]  Y. Takashima,et al.  Chiral supramolecular polymers formed by host-guest interactions. , 2005, Journal of the American Chemical Society.

[58]  Yoram Cohen,et al.  Diffusions‐NMR‐Spektroskopie in der Supramolekularen und Kombinatorischen Chemie: ein alter Parameter – neue Erkenntnisse , 2005 .

[59]  A. Harada,et al.  Construction of Supramolecular Polymers with Alternating α-, β-Cyclodextrin Units Using Conformational Change Induced by Competitive Guests , 2004 .

[60]  G. J. Fleer,et al.  Water-soluble reversible coordination polymers: chains and rings , 2003 .

[61]  Michael E. Cates,et al.  Reptation of living polymers: dynamics of entangled polymers in the presence of reversible chain-scission reactions , 1987 .