Investigation of ZPE and temperature effects on the Eley―Rideal recombination of hydrogen atoms on graphene using a multidimensional graphene―H―H potential

[1]  P. Briddon,et al.  Hydrogen adsorption on graphene: a first principles study , 2010 .

[2]  R. Martinazzo,et al.  Quantum dynamics of the Eley-Rideal hydrogen formation reaction on graphite at typical interstellar cloud conditions. , 2009, The journal of physical chemistry. A.

[3]  D. Teillet-Billy,et al.  Unrestricted study of the Eley-Rideal formation of H(2) on graphene using a new multidimensional graphene-H-H potential: role of the substrate. , 2009, Physical chemistry chemical physics : PCCP.

[4]  D. Teillet-Billy,et al.  Double H atom adsorption on a cluster model of a graphite surface , 2006 .

[5]  R. Martinazzo,et al.  Quantum effects in an exoergic, barrierless reaction at high collision energies. , 2005, The journal of physical chemistry. A.

[6]  V. Sidis,et al.  Role of Surface Relaxation in the Eley−Rideal Formation of H2 on a Graphite Surface† , 2004 .

[7]  A. Fisher,et al.  Surface Coverage Effects on the Formation of Molecular Hydrogen on a Graphite Surface via an Eley-Rideal Mechanism , 2003 .

[8]  V. Sidis,et al.  Quantum wavepacket investigation of Eley Rideal formation of H2 on a relaxing graphite surface , 2003 .

[9]  V. Sidis,et al.  The dynamics of H2 formation on a graphite surface at low temperature , 2003 .

[10]  X. Sha,et al.  Adsorption of hydrogen and deuterium atoms on the (0001) graphite surface , 2002 .

[11]  A. Meijer,et al.  Isotope effects in the formation of molecular hydrogen on a graphite surface via an Eley-Rideal mechanism , 2002 .

[12]  X. Sha,et al.  Quantum studies of Eley–Rideal reactions between H atoms on a graphite surface , 2002 .

[13]  Y. H. Kim,et al.  Dynamics of H2 formation on a graphite surface , 2002 .

[14]  X. Sha,et al.  First-principles study of the structural and energetic properties of H atoms on a graphite (0001) surface , 2002 .

[15]  G. D. Billing,et al.  Hydrogen atom recombination on graphite at 10 K via the Eley–Rideal mechanism , 2001 .

[16]  A. Fisher,et al.  Time-Dependent Quantum Mechanical Calculations on the Formation of Molecular Hydrogen on a Graphite Surface via an Eley−Rideal Mechanism† , 2001 .

[17]  V. Philipps,et al.  Hydrogen inventories in nuclear fusion devices , 2001 .

[18]  A. Fisher,et al.  Formation of molecular hydrogen on a graphite surface via an Eley–Rideal mechanism , 2000 .

[19]  V. Sidis,et al.  DFT investigation of the adsorption of atomic hydrogen on a cluster-model graphite surface , 1999 .

[20]  D. Brenner,et al.  Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. , 1990, Physical review. B, Condensed matter.

[21]  W. Press,et al.  Numerical Recipes: The Art of Scientific Computing , 1987 .

[22]  J. Ree,et al.  Reactions of Gas-Phase Atomic Hydrogen with Chemisorbed Hydrogen on a Graphite Surface , 2007 .

[23]  M. Cacciatore,et al.  Semiclassical molecular dynamics simulation of surface processes: Application to the hydrogen atom recombination on graphite , 2006 .

[24]  P. Parneix Molecular dynamics simulation of the H 2 recombination on a graphite surface , 1998 .

[25]  Edwin E. Salpeter,et al.  Surface recombination of hydrogen molecules , 1971 .