Reactive Molecular Simulation on Water Confined in the Nanopores of the Calcium Silicate Hydrate Gel: Structure, Reactivity, and Mechanical Properties

Calcium silicate hydrate (C–S–H) is a mesoporous amorphous material with water confined in the gel pores, which provides the medium for investigating the structure, dynamics, and mechanical properties of the ultraconfined interlayer water molecules. In this study, C–S–H gels with different compositions expressed in terms of the Ca/Si ratio are characterized in the light of molecular dynamics. It is found that with increasing Ca/Si ratio, the molecular structure of the silicate skeleton progressively transforms from an ordered to an amorphous structure. The calcium silicate skeleton, representative of the substrate, significantly influences the adsorption capability, reactivity, H-bond network, and mobility of the interlayer water molecules. The structures were tested for mechanical properties by simulated uniaxial tension, and the mechanical tests associated with structural analysis reveal that the stiffness and cohesive force of C–S–H gel is weakened by both breakage of silicate chains and penetration of...

[1]  R. Feldman,et al.  A model for hydrated Portland cement paste as deduced from sorption-length change and mechanical properties , 1968 .

[2]  S. Garofalini,et al.  Oligomerization in silica sols , 1990 .

[3]  C. M. Dobson,et al.  In situ solid-state NMR studies of Ca3SiO5: hydration at room temperature and at elevated temperatures using 29Si enrichment , 1994, Journal of Materials Science.

[4]  X. Cong,et al.  29Si MAS NMR study of the structure of calcium silicate hydrate , 1996 .

[5]  A. Benesi,et al.  DETERMINATION OF THE STATE OF WATER IN HYDRATED CEMENT PHASES USING DEUTERIUM NMR SPECTROSCOPY , 1998 .

[6]  D. Bentz,et al.  1H nuclear magnetic resonance characterization of Portland cement: molecular diffusion of water studied by spin relaxation and relaxation time-weighted imaging , 1998 .

[7]  S. Merlino,et al.  The real structure of tobermorite 11A: normal and anomalous forms, OD character and polytypic modifications , 2001 .

[8]  A. V. Duin,et al.  ReaxFF: A Reactive Force Field for Hydrocarbons , 2001 .

[9]  Donald W. Brenner,et al.  A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons , 2002 .

[10]  D. Neumann,et al.  Ca-OH Bonding in the C-S-H Gel Phase of Tricalcium Silicate and White Portland Cement Pastes Measured by Inelastic Neutron Scattering , 2003 .

[11]  A. V. Duin,et al.  ReaxFFSiO Reactive Force Field for Silicon and Silicon Oxide Systems , 2003 .

[12]  Jianwei Wang,et al.  Molecular modeling of water structure in nano-pores between brucite (001) surfaces 1 1 Associate editor: U. Becker , 2004 .

[13]  E. Lesniewska,et al.  Investigation of the surface structure and elastic properties of calcium silicate hydrates at the nanoscale. , 2004, Ultramicroscopy.

[14]  C. Hansson,et al.  Monitoring of Hydration of White Cement Paste with Proton NMR Spin–Spin Relaxation , 2004 .

[15]  T. Zhu,et al.  Stress-dependent molecular pathways of silica–water reaction , 2005 .

[16]  H. Bordallo,et al.  Water dynamics in hardened ordinary Portland cement paste or concrete: from quasielastic neutron scattering. , 2006, The journal of physical chemistry. B.

[17]  Sergey M Bezrukov,et al.  Single polymer molecules in a protein nanopore in the limit of a strong polymer-pore attraction. , 2006, Physical review letters.

[18]  Jeffrey J. Thomas,et al.  Composition and density of nanoscale calcium-silicate-hydrate in cement. , 2007, Nature materials.

[19]  M. Griebel,et al.  A Molecular Dynamic Study of Cementitious Calcium Silicate Hydrate (C–S–H) Gels , 2007 .

[20]  H. Manzano,et al.  Mechanical properties of crystalline calcium‐silicate‐hydrates: comparison with cementitious C‐S‐H gels , 2007 .

[21]  J. Skinner,et al.  Hydrogen bonding definitions and dynamics in liquid water. , 2007, The Journal of chemical physics.

[22]  R. Pellenq,et al.  Grand canonical monte carlo simulation study of water adsorption in silicalite at 300 K. , 2008, The journal of physical chemistry. B.

[23]  V. Kocherbitov Properties of Water Confined in an Amphiphilic Nanopore , 2008 .

[24]  Chongxuan Liu,et al.  Molecular simulations of water and ion diffusion in nanosized mineral fractures. , 2009, Environmental science & technology.

[25]  Roland J.-M. Pellenq,et al.  First-Principles Study of Elastic Constants and Interlayer Interactions of Complex Hydrated Oxides: Case Study of Tobermorite and Jennite , 2009 .

[26]  Markus J Buehler,et al.  A realistic molecular model of cement hydrates , 2009, Proceedings of the National Academy of Sciences.

[27]  R. Selvam,et al.  Molecular Dynamics to Understand the Mechanical Behavior of Cement Paste , 2010 .

[28]  R. González-Teresa,et al.  Espectros de rayos X y propiedades elásticas teóricas de los silicatos cálcicos hidratados cristalinos: comparación con los geles de cemento , 2010 .

[29]  S. Yip,et al.  Atomistic simulation of creep in a nanocrystal. , 2010, Physical review letters.

[30]  J. Dolado,et al.  Effect of hydration on the dielectric properties of C-S-H gel. , 2011, The Journal of chemical physics.

[31]  Franz-Josef Ulm,et al.  Empirical force fields for complex hydrated calcio-silicate layered materials. , 2011, Physical chemistry chemical physics : PCCP.

[32]  R. Pellenq,et al.  Glassy nature of water in an ultraconfining disordered material: the case of calcium-silicate-hydrate. , 2011, Journal of the American Chemical Society.

[33]  A. V. van Duin,et al.  Hydration of calcium oxide surface predicted by reactive force field molecular dynamics. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[34]  A. V. van Duin,et al.  Confined water dissociation in microporous defective silicates: mechanism, dipole distribution, and impact on substrate properties. , 2012, Journal of the American Chemical Society.

[35]  K. V. Van Vliet,et al.  Thermodynamics of water confined in porous calcium-silicate-hydrates. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[36]  P. Gleize,et al.  Effect of the Ca/Si Molar Ratio on the Micro/nanomechanical Properties of Synthetic C-S-H Measured by Nanoindentation , 2012 .

[37]  M. Wendland,et al.  Simulation of Forces between Humid Amorphous Silica Surfaces: A Comparison of Empirical Atomistic Force Fields , 2012, The journal of physical chemistry. C, Nanomaterials and interfaces.

[38]  H. Manzano,et al.  Shear deformations in calcium silicate hydrates , 2013 .

[39]  K. V. Van Vliet,et al.  Combinatorial molecular optimization of cement hydrates , 2014, Nature Communications.

[40]  Hongyan Ma,et al.  Calcium Silicate Hydrate from Dry to Saturated State: Structure, Dynamics and Mechanical Properties , 2014 .

[41]  M. Bauchy,et al.  Anomalous composition-dependent dynamics of nanoconfined water in the interlayer of disordered calcium-silicates. , 2014, The Journal of chemical physics.