Electro-optics of perovskite solar cells

[1]  M. Nazeeruddin,et al.  Metal‐Oxide‐Free Methylammonium Lead Iodide Perovskite‐Based Solar Cells: the Influence of Organic Charge Transport Layers , 2014 .

[2]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[3]  Jinsong Huang,et al.  Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process , 2014 .

[4]  Young Chan Kim,et al.  o-Methoxy substituents in spiro-OMeTAD for efficient inorganic-organic hybrid perovskite solar cells. , 2014, Journal of the American Chemical Society.

[5]  K. Butler,et al.  Ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells , 2014 .

[6]  Aron Walsh,et al.  Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells , 2014, 1405.5810.

[7]  Mohammad Khaja Nazeeruddin,et al.  Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency , 2014, Nature Communications.

[8]  Nripan Mathews,et al.  Low-temperature solution-processed wavelength-tunable perovskites for lasing. , 2014, Nature materials.

[9]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[10]  Guglielmo Lanzani,et al.  Excitons versus free charges in organo-lead tri-halide perovskites , 2014, Nature Communications.

[11]  Paul L. Burn,et al.  Quantum Efficiency of Organic Solar Cells: Electro-Optical Cavity Considerations , 2014 .

[12]  Aron Walsh,et al.  Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells , 2014, Nano letters.

[13]  Konrad Wojciechowski,et al.  Sub-150 °C processed meso-superstructured perovskite solar cells with enhanced efficiency , 2014 .

[14]  Aron Walsh,et al.  Electronic structure of hybrid halide perovskite photovoltaic absorbers , 2014, 1401.6993.

[15]  J. Teuscher,et al.  Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells , 2014, Nature Photonics.

[16]  Henk J. Bolink,et al.  Perovskite solar cells employing organic charge-transport layers , 2013, Nature Photonics.

[17]  Henry J Snaith,et al.  Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates , 2013, Nature Communications.

[18]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[19]  Ling-yi Huang,et al.  Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl 3 , CsSnBr 3 , and CsSnI 3 , 2013 .

[20]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[21]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[22]  Michael Grätzel,et al.  First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications , 2013 .

[23]  Paul L. Burn,et al.  Doping‐Induced Screening of the Built‐in‐Field in Organic Solar Cells: Effect on Charge Transport and Recombination , 2013 .

[24]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[25]  Gui Yu,et al.  A stable solution-processed polymer semiconductor with record high-mobility for printed transistors , 2012, Scientific Reports.

[26]  Peng Gao,et al.  Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. , 2012, Journal of the American Chemical Society.

[27]  P. Meredith,et al.  Injected charge extraction by linearly increasing voltage for bimolecular recombination studies in organic solar cells , 2012 .

[28]  J. Valenta,et al.  Luminescence Spectroscopy of Semiconductors , 2012 .

[29]  Eric T. Hoke,et al.  Accounting for Interference, Scattering, and Electrode Absorption to Make Accurate Internal Quantum Efficiency Measurements in Organic and Other Thin Solar Cells , 2010, Advanced materials.

[30]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[31]  Takashi Kondo,et al.  Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3 , 2003 .

[32]  L. S. Roman,et al.  Modeling photocurrent action spectra of photovoltaic devices based on organic thin films , 1999 .

[33]  Ishihara,et al.  Excitons in self-organized semiconductor/insulator superlattices: PbI-based perovskite compounds. , 1995, Physical review. B, Condensed matter.

[34]  Teruya Ishihara,et al.  Exciton Features in 0-, 2-, and 3-Dimensional Networks of [PbI6]4- Octahedra , 1994 .

[35]  N. Miura,et al.  Magnetoabsorption of the lowest exciton in perovskite-type compound (CH3NH3)PbI3 , 1994 .

[36]  Hiroshi Suga,et al.  Dielectric study of CH3NH3PbX3 (X = Cl, Br, I) , 1992 .

[37]  S. Takeyama,et al.  Magneto-Optical Effect of the Wannier Exciton in a Biaxial ZnP2 Crystal. II , 1988 .

[38]  A. K. Jonscher,et al.  Analysis of the alternating current properties of ionic conductors , 1978 .

[39]  D. Roessler Kramers - Kronig analysis of non-normal incidence reflection , 1965 .

[40]  R. A. SMITH,et al.  Physics of Semiconductors , 1960, Nature.

[41]  B. Lax,et al.  Theory of Optical Magneto-Absorption Effects in Semiconductors , 1959 .

[42]  P. Meredith,et al.  The rise of the perovskites: the future of low cost solar photovoltaics? , 2014 .

[43]  R. Service,et al.  Energy technology. Perovskite solar cells keep on surging. , 2014, Science.

[44]  Rolf W. Martin,et al.  OPTICAL PROPERTIES OF SEMICONDUCTORS , 2000 .

[45]  T. Pruschke,et al.  Introduction to Solid-State Theory , 1996 .

[46]  Claus Klingshirn,et al.  Semiconductor Optics , 1995 .