Efficient In-Database Analytics with Graphical Models
暂无分享,去创建一个
[1] Matthew Richardson,et al. Markov logic networks , 2006, Machine Learning.
[2] MADden: query-driven statistical text analytics , 2012, CIKM '12.
[3] Nir Friedman,et al. Probabilistic Graphical Models - Principles and Techniques , 2009 .
[4] Praveen Paritosh,et al. Freebase: a collaboratively created graph database for structuring human knowledge , 2008, SIGMOD Conference.
[5] Daisy Zhe Wang,et al. Hybrid in-database inference for declarative information extraction , 2011, SIGMOD '11.
[6] Joseph M. Hellerstein,et al. MAD Skills: New Analysis Practices for Big Data , 2009, Proc. VLDB Endow..
[7] Andrew McCallum,et al. An Introduction to Conditional Random Fields for Relational Learning , 2007 .
[8] Andrew McCallum,et al. Query-Aware MCMC , 2011, NIPS.
[9] Kun Li,et al. The MADlib Analytics Library or MAD Skills, the SQL , 2012, Proc. VLDB Endow..
[10] Pedro M. Domingos,et al. Memory-Efficient Inference in Relational Domains , 2006, AAAI.
[11] Daisy Zhe Wang,et al. Knowledge expansion over probabilistic knowledge bases , 2014, SIGMOD Conference.
[12] Joseph M. Hellerstein,et al. GraphLab: A New Framework For Parallel Machine Learning , 2010, UAI.
[13] Peter J. Haas,et al. MCDB: a monte carlo approach to managing uncertain data , 2008, SIGMOD Conference.
[14] Kun Li,et al. GPText: Greenplum parallel statistical text analysis framework , 2013, DanaC '13.
[15] Pedro M. Domingos,et al. A General Method for Reducing the Complexity of Relational Inference and its Application to MCMC , 2008, AAAI.
[16] Daisy Zhe Wang,et al. Probabilistic declarative information extraction , 2010, 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010).
[17] Fabian M. Suchanek,et al. Inside YAGO2s: a transparent information extraction architecture , 2013, WWW '13 Companion.
[18] Raghu Ramakrishnan,et al. Optimizing mpf queries: decision support and probabilistic inference , 2007, SIGMOD '07.
[19] Matthew Richardson,et al. The Alchemy System for Statistical Relational AI: User Manual , 2007 .
[20] Oren Etzioni,et al. Learning First-Order Horn Clauses from Web Text , 2010, EMNLP.
[21] Sriraam Natarajan,et al. Speeding Up Inference in Markov Logic Networks by Preprocessing to Reduce the Size of the Resulting Grounded Network , 2009, IJCAI.
[22] Luis Gravano,et al. Using q-grams in a DBMS for Approximate String Processing , 2001, IEEE Data Eng. Bull..
[23] Andrew McCallum,et al. Scalable probabilistic databases with factor graphs and MCMC , 2010, Proc. VLDB Endow..
[24] Christopher Ré,et al. Tuffy: Scaling up Statistical Inference in Markov Logic Networks using an RDBMS , 2011, Proc. VLDB Endow..
[25] Michael J. Franklin,et al. Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing , 2012, NSDI.
[26] Oren Etzioni,et al. Scaling Textual Inference to the Web , 2008, EMNLP.
[27] Daisy Zhe Wang,et al. BayesStore: managing large, uncertain data repositories with probabilistic graphical models , 2008, Proc. VLDB Endow..
[28] Oren Etzioni,et al. Identifying Functional Relations in Web Text , 2010, EMNLP.
[29] Daisy Zhe Wang,et al. Querying probabilistic information extraction , 2010, Proc. VLDB Endow..
[30] Prithviraj Sen,et al. Representing and Querying Correlated Tuples in Probabilistic Databases , 2007, 2007 IEEE 23rd International Conference on Data Engineering.
[31] Hinrich Schütze,et al. Book Reviews: Foundations of Statistical Natural Language Processing , 1999, CL.