Shedding light on bioluminescence regulation in Vibrio fischeri

The bioluminescence emitted by the marine bacterium Vibrio fischeri is a particularly striking result of individual microbial cells co‐ordinating a group behaviour. The genes responsible for light production are principally regulated by the LuxR–LuxI quorum‐sensing system. In addition to LuxR–LuxI, numerous other genetic elements and environmental conditions control bioluminescence production. Efforts to mathematically model the LuxR–LuxI system are providing insight into the dynamics of this autoinduction behaviour. The Hawaiian squid Euprymna scolopes forms a natural symbiosis with V. fischeri, and utilizes the symbiont‐derived bioluminescence for certain nocturnal behaviours, such as counterillumination. Recent work suggests that the tissue with which V. fischeri associates not only can detect bioluminescence but may also use this light to monitor the V. fischeri population.

[1]  B. Bassler,et al.  Gene dosage compensation calibrates four regulatory RNAs to control Vibrio cholerae quorum sensing , 2009, The EMBO journal.

[2]  Stephen J. Hagen,et al.  Noise and crosstalk in two quorum-sensing inputs of Vibrio fischeri , 2011, BMC Systems Biology.

[3]  E. Ruby,et al.  A single qrr gene is necessary and sufficient for LuxO‐mediated regulation in Vibrio fischeri , 2010, Molecular microbiology.

[4]  B. Bassler,et al.  Ligand-Induced Asymmetry in Histidine Sensor Kinase Complex Regulates Quorum Sensing , 2006, Cell.

[5]  Andrea L. Small,et al.  Halide peroxidase in tissues that interact with bacteria in the host squid Euprymna scolopes , 1999, Journal of cellular biochemistry.

[6]  N. Wingreen,et al.  The Small RNA Chaperone Hfq and Multiple Small RNAs Control Quorum Sensing in Vibrio harveyi and Vibrio cholerae , 2004, Cell.

[7]  Mark J. Mandel,et al.  Contribution of Rapid Evolution of the luxR-luxI Intergenic Region to the Diverse Bioluminescence Outputs of Vibrio fischeri Strains Isolated from Different Environments , 2011, Applied and Environmental Microbiology.

[8]  Dimerization of the quorum‐sensing transcription factor TraR enhances resistance to cytoplasmic proteolysis , 2009, Molecular microbiology.

[9]  E. Greenberg,et al.  Transcriptome Analysis of the Vibrio fischeri LuxR-LuxI Regulon , 2007, Journal of bacteriology.

[10]  B. Bassler,et al.  Quorum-sensing non-coding small RNAs use unique pairing regions to differentially control mRNA targets , 2012, Molecular microbiology.

[11]  K. Murakami,et al.  Role of the C-Terminal Domain of the Alpha Subunit of RNA Polymerase in LuxR-Dependent Transcriptional Activation of the lux Operon during Quorum Sensing , 2002, Journal of bacteriology.

[12]  Unmi Kim,et al.  Bioluminescence in Vibrio fischeri is controlled by the redox‐responsive regulator ArcA , 2007, Molecular microbiology.

[13]  B. Bassler,et al.  AphA and LuxR/HapR reciprocally control quorum sensing in vibrios. , 2011, Genes & development.

[14]  Kirsten Jung,et al.  Heterogeneity in quorum sensing‐regulated bioluminescence of Vibrio harveyi , 2009, Molecular microbiology.

[15]  E. Greenberg,et al.  Glucose repression of luminescence and luciferase in vibrio fischeri , 1983, Archives of Microbiology.

[16]  Stephen J. Hagen,et al.  Heterogeneous Response to a Quorum-Sensing Signal in the Luminescence of Individual Vibrio fischeri , 2010, PloS one.

[17]  E. Meighen,et al.  LUX C, D AND E GENES OF THE Vibrio fischeri LUMINESCENCE OPERON CODE FOR THE REDUCTASE, TRANSFERASE, AND SYNTHETASE ENZYMES INVOLVED IN ALDEHYDE BIOSYNTHESIS , 1989, Photochemistry and photobiology.

[18]  E. Greenberg,et al.  A Mutational Analysis Defines Vibrio fischeri LuxR Binding Sites , 2007, Journal of bacteriology.

[19]  A. Kolb,et al.  CAP and Nag repressor binding to the regulatory regions of the nagE-B and manX genes of Escherichia coli. , 1991, Journal of molecular biology.

[20]  E. Ruby,et al.  A single regulatory gene is sufficient to alter bacterial host range , 2009, Nature.

[21]  P. Kambam,et al.  Directed evolution of LuxI for enhanced OHHL production , 2008, Biotechnology and bioengineering.

[22]  E. Ruby,et al.  Vibrio fischeri LuxS and AinS: Comparative Study of Two Signal Synthases , 2004, Journal of bacteriology.

[23]  F. Arnold,et al.  Implications of Rewiring Bacterial Quorum Sensing , 2007, Applied and Environmental Microbiology.

[24]  E. Greenberg,et al.  Synergistic binding of the Vibrio fischeri LuxR transcriptional activator domain and RNA polymerase to the lux promoter region , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[25]  E. Greenberg,et al.  Sociomicrobiology: the connections between quorum sensing and biofilms. , 2005, Trends in microbiology.

[26]  E. Ruby Symbiotic conversations are revealed under genetic interrogation , 2008, Nature Reviews Microbiology.

[27]  B. Hammer,et al.  The Vibrio cholerae quorum sensing response is mediated by Hfq‐dependent sRNA/mRNA base pairing interactions , 2011, Molecular microbiology.

[28]  E. Ruby,et al.  The Novel Sigma Factor-Like Regulator RpoQ Controls Luminescence, Chitinase Activity, and Motility in Vibrio fischeri , 2012, mBio.

[29]  E. Greenberg,et al.  Mutational analysis of the Vibrio fischeri LuxI polypeptide: critical regions of an autoinducer synthase , 1997, Journal of bacteriology.

[30]  Hakeem G. Almabrazi,et al.  Effects of colonization, luminescence, and autoinducer on host transcription during development of the squid-vibrio association , 2008, Proceedings of the National Academy of Sciences.

[31]  V. Cooper,et al.  Breaking the language barrier: experimental evolution of non-native Vibrio fischeri in squid tailors luminescence to the host , 2010, Symbiosis.

[32]  E. Ruby,et al.  AinS Quorum Sensing Regulates the Vibrio fischeri Acetate Switch , 2008, Journal of bacteriology.

[33]  E. Ruby,et al.  The N‐acetyl‐d‐glucosamine repressor NagC of Vibrio fischeri facilitates colonization of Euprymna scolopes , 2011, Molecular microbiology.

[34]  S. V. Nyholm,et al.  Characterizing the Host and Symbiont Proteomes in the Association between the Bobtail Squid, Euprymna scolopes, and the Bacterium, Vibrio fischeri , 2011, PloS one.

[35]  E. Ruby,et al.  LitR, a new transcriptional activator in Vibrio fischeri, regulates luminescence and symbiotic light organ colonization , 2002, Molecular microbiology.

[36]  E. Greenberg,et al.  The C-terminal region of the Vibrio fischeri LuxR protein contains an inducer-independent lux gene activating domain. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[37]  E. Ruby,et al.  Vibrio fischeri and its host: it takes two to tango. , 2006, Current opinion in microbiology.

[38]  E. Ruby,et al.  Quorum Signaling and Symbiosis in the Marine Luminous Bacterium Vibrio fischeri , 2008 .

[39]  E. Greenberg,et al.  Evidence that the N-terminal region of the Vibrio fischeri LuxR protein constitutes an autoinducer-binding domain , 1995, Journal of bacteriology.

[40]  Ned S Wingreen,et al.  Active regulation of receptor ratios controls integration of quorum-sensing signals in Vibrio harveyi , 2011, Molecular systems biology.

[41]  E. Greenberg,et al.  Diffusion of autoinducer is involved in regulation of the Vibrio fischeri luminescence system , 1985, Journal of bacteriology.

[42]  C. Kuttler,et al.  Interplay of two quorum sensing regulation systems of Vibrio fischeri. , 2008, Journal of theoretical biology.

[43]  E. Greenberg,et al.  The Vibrio fischeri quorum‐sensing systems ain and lux sequentially induce luminescence gene expression and are important for persistence in the squid host , 2003, Molecular microbiology.

[44]  A. Levchenko,et al.  Robust and sensitive control of a quorum-sensing circuit by two interlocked feedback loops , 2008, Molecular systems biology.

[45]  Mark J. Mandel Models and approaches to dissect host-symbiont specificity. , 2010, Trends in microbiology.

[46]  S. Park,et al.  Aerobic-anaerobic gene regulation in Escherichia coli: control by the ArcAB and Fnr regulons. , 1994, Research in microbiology.

[47]  E. Greenberg,et al.  Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators , 1994, Journal of bacteriology.

[48]  Edward G. Ruby,et al.  Vibrio fischeri lux Genes Play an Important Role in Colonization and Development of the Host Light Organ , 2000, Journal of bacteriology.

[49]  N. Wingreen,et al.  Negative feedback loops involving small regulatory RNAs precisely control the Vibrio harveyi quorum-sensing response. , 2010, Molecular cell.

[50]  B. Bassler,et al.  Regulatory small RNAs circumvent the conventional quorum sensing pathway in pandemic Vibrio cholerae , 2007, Proceedings of the National Academy of Sciences.

[51]  M. Laub,et al.  Specificity in two-component signal transduction pathways. , 2007, Annual review of genetics.

[52]  Bonnie L Bassler,et al.  A strategy for antagonizing quorum sensing. , 2011, Molecular cell.

[53]  K. Nealson,et al.  Bacterial bioluminescence: Isolation and genetic analysis of functions from Vibrio fischeri , 1983, Cell.

[54]  E. Ruby,et al.  Depressed light emission by symbiotic Vibrio fischeri of the sepiolid squid Euprymna scolopes , 1990, Journal of bacteriology.

[55]  E. Ruby,et al.  Polyphyly of non-bioluminescent Vibrio fischeri sharing a lux-locus deletion. , 2012, Environmental microbiology.

[56]  E. Greenberg,et al.  Quorum sensing in Vibrio fischeri: elements of the luxI promoter , 1999, Molecular microbiology.

[57]  P. Dunlap,et al.  LuxR- and Acyl-Homoserine-Lactone-Controlled Non-luxGenes Define a Quorum-Sensing Regulon in Vibrio fischeri , 2000, Journal of bacteriology.

[58]  E. Meighen,et al.  Bacterial bioluminescence: organization, regulation, and application of the lux genes , 1993, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[59]  E. P. Greenberg,et al.  Reversible Acyl-Homoserine Lactone Binding to Purified Vibrio fischeri LuxR Protein , 2004, Journal of bacteriology.

[60]  S. C. Winans,et al.  The quorum-sensing transcriptional regulator TraR requires its cognate signaling ligand for protein folding, protease resistance, and dimerization. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Rahul V. Kulkarni,et al.  Regulatory targets of quorum sensing in Vibrio cholerae: evidence for two distinct HapR-binding motifs , 2009, Nucleic acids research.

[62]  B. Bassler,et al.  Regulation of quorum sensing in Vibrio harveyi by LuxO and Sigma‐54 , 2000, Molecular microbiology.

[63]  N. Brown,et al.  Molecular Microbiology , 1998, NATO ASI Series.

[64]  B. Bassler,et al.  Multiple small RNAs act additively to integrate sensory information and control quorum sensing in Vibrio harveyi. , 2007, Genes & development.

[65]  H. Blackwell,et al.  Thiolactone modulators of quorum sensing revealed through library design and screening. , 2011, Bioorganic & medicinal chemistry.

[66]  E. Greenberg,et al.  Generation of cell-to-cell signals in quorum sensing: acyl homoserine lactone synthase activity of a purified Vibrio fischeri LuxI protein. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[67]  M. Moline,et al.  Bioluminescence in the sea. , 2010, Annual review of marine science.

[68]  P. Chaiyen,et al.  LuxG Is a Functioning Flavin Reductase for Bacterial Luminescence , 2007, Journal of bacteriology.

[69]  M. Churchill,et al.  Structural basis and specificity of acyl-homoserine lactone signal production in bacterial quorum sensing. , 2002, Molecular cell.

[70]  D. Milton Quorum sensing in vibrios: complexity for diversification. , 2006, International journal of medical microbiology : IJMM.

[71]  H. Schweizer,et al.  Structure of the Pseudomonas aeruginosa acyl‐homoserinelactone synthase LasI , 2004, Molecular microbiology.

[72]  Todd H. Oakley,et al.  Evidence for light perception in a bioluminescent organ , 2009, Proceedings of the National Academy of Sciences.

[73]  M. McFall-Ngai,et al.  The secret languages of coevolved symbioses: insights from the Euprymna scolopes-Vibrio fischeri symbiosis. , 2012, Seminars in immunology.

[74]  Kirsten Jung,et al.  AI-1 Influences the Kinase Activity but Not the Phosphatase Activity of LuxN of Vibrio harveyi* , 2006, Journal of Biological Chemistry.

[75]  Hakeem G. Almabrazi,et al.  Transcriptional patterns in both host and bacterium underlie a daily rhythm of anatomical and metabolic change in a beneficial symbiosis , 2010, Proceedings of the National Academy of Sciences.

[76]  Edward G. Ruby,et al.  Vibrio fischeri Uses Two Quorum-Sensing Systems for the Regulation of Early and Late Colonization Factors , 2005, Journal of bacteriology.

[77]  John C. Anderson,et al.  Structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA , 2002, Nature.

[78]  M. Montgomery,et al.  Bacterial symbionts induce host organ morphogenesis during early postembryonic development of the squid Euprymna scolopes. , 1994, Development.

[79]  E. A. O'Grady,et al.  Mutations in the lux Operon of Natural Dark Mutants in the Genus Vibrio , 2007, Applied and Environmental Microbiology.

[80]  E. Greenberg,et al.  Complete genome sequence of Vibrio fischeri: a symbiotic bacterium with pathogenic congeners. , 2005, Proceedings of the National Academy of Sciences of the United States of America.