Evaluation of the Run-Length Probability Distribution for CUSUM Charts: Assessing Chart Performance

This article provides a fast and accurate algorithm to compute the run-length probability distribution for cumulative sum charts to control process mean. This algorithm uses a fast and numerically stable recursive formula based on accurate Gaussian quadrature rules throughout the whole range of the computed run-length distribution and, therefore, improves the numerical efficiency and accuracy of existing methods. The algorithm may detect whether or not the geometric approximation is adequate and, when it is possible, it allows switching to the geometric recursion. The procedure may be applied not only to the normal distribution but also to nonsymmetric and long-tailed continuous distributions, some examples of which are provided. Methods to assess chart performance according to the run-length distribution, as well as some multivariate issues in statistical process control, are considered.

[1]  James M. Lucas,et al.  The Design and Use of V-Mask Control Schemes , 1976 .

[2]  A. F. Bissell,et al.  Cusum Techniques for Quality Control , 1969 .

[3]  John F. MacGregor,et al.  Using On‐Line Process Data to Improve Quality: Challenges for Statisticians * , 1997 .

[4]  William H. Fellner Algorithm AS 258: Average Run Lengths for Cumulative Sum Schemes , 1990 .

[5]  Frederick W. Faltin,et al.  Statistical Control by Monitoring and Feedback Adjustment , 1999, Technometrics.

[6]  E. S. Page CONTINUOUS INSPECTION SCHEMES , 1954 .

[7]  G. B. Wetherill,et al.  Quality Control and Industrial Statistics , 1975 .

[8]  K. W. Kemp,et al.  Sampling inspection of continuous processes with no autocorrelation between successive results , 1960 .

[9]  Fah Fatt Gan,et al.  An optimal design of CUSUM quality control charts , 1991 .

[10]  Russell V. Lenth,et al.  Cumulative Distribution Function of the Noncentral T Distribution , 1989 .

[11]  Emmanuel Yashchin,et al.  On the Analysis and Design of CUSUM-Shewhart Control Schemes , 1985, IBM J. Res. Dev..

[12]  William H. Woodall,et al.  THE STATISTICAL DESIGN OF CUSUM CHARTS , 1993 .

[13]  D. A. Evans,et al.  An approach to the probability distribution of cusum run length , 1972 .

[14]  D. Siegmund Sequential Analysis: Tests and Confidence Intervals , 1985 .

[15]  William H. Woodall,et al.  The design of CUSUM quality control charts , 1986 .

[16]  Elisabeth J. Umble,et al.  Cumulative Sum Charts and Charting for Quality Improvement , 2001, Technometrics.

[17]  Richard A. Johnson,et al.  The Effect of Serial Correlation on the Performance of CUSUM Tests II , 1974 .

[18]  William H. Press,et al.  Numerical recipes , 1990 .

[19]  Lonnie C. Vance Computer Programs: Average Run Lengths of Cumulative Sum Control Charts for Controlling Normal Means , 1986 .

[20]  Douglas C. Montgomery,et al.  Introduction to Statistical Quality Control , 1986 .

[21]  N. L. Johnson,et al.  A Simple Theoretical Approach to Cumulative Sum Control Charts , 1961 .

[22]  Donald B. Owen,et al.  Survey of Properties and Applications of the Noncentral t-Distribution , 1968 .

[23]  M LucasJames,et al.  Fast initial response for CUSUM quality-control schemes , 2000 .

[24]  Alberto Luceno George,et al.  Influence of the sampling interval, decision limit and autocorrelation on the average run length in Cusum charts , 2000 .

[25]  Harrison M. Wadsworth,et al.  Modern methods for quality control and improvement , 1986 .

[26]  D. H. Besterfield Quality control , 1979 .

[27]  Fah Fatt Gan,et al.  The run length distribution of a cumulative sum control chart , 1993 .

[28]  A. Goel,et al.  Determination of A.R.L. and a Contour Nomogram for Cusum Charts to Control Normal Mean , 1971 .

[29]  William H. Woodall,et al.  The Distribution of the Run Length of One-Sided CUSUM Procedures for Continuous Random Variables , 1983 .

[30]  G. Box,et al.  Cumulative score charts , 1992 .

[31]  J. Lucas,et al.  Robust cusum: a robustness study for cusum quality control schemes , 1982 .

[32]  K. Stout Cumulative Sum Charts , 1985 .

[33]  Alberto Luceño,et al.  Average run lengths and run length probability distributions for cuscore charts to control normal mean , 1999 .

[34]  Douglas M. Hawkins A fast accurate approximation for average run lengths of CUSUM control charts , 1992 .

[35]  K. Waldmann,et al.  Bounds for the Distribution of the Run Length of One-Sided and Two-Sided CUSUM Quality Control Schemes , 1986 .

[36]  Paul Geladi,et al.  Principal Component Analysis , 1987, Comprehensive Chemometrics.

[37]  William H. Woodall,et al.  The Use (and Misuse) of False Alarm Probabilities in Control Chart Design , 1992 .

[38]  E. S. Page Cumulative Sum Charts , 1961 .

[39]  Kenneth W. Kemp,et al.  The Use of Cumulative Sums for Sampling Inspection Schemes , 1962 .