Generalized HÉnon Maps and Smale Horseshoes of New Types

We study hyperbolic dynamics and bifurcations for generalized Henon maps in the form (with b, α small and γ > 4). Hyperbolic horseshoes with alternating orientation, called half-orientable horseshoes, are proved to represent the nonwandering set of the maps in certain parameter regions. We show that there are infinitely many classes of such horseshoes with respect to the local topological conjugacy. We also study transitions from the usual orientable and nonorientable horseshoes to half-orientable ones (and vice versa) as parameters vary.

[1]  M. Malkin,et al.  Bounded Nonwandering Sets for Polynomial Mappings , 2004 .

[2]  James A. Yorke,et al.  How often do simple dynamical processes have infinitely many coexisting sinks? , 1986 .

[3]  S. Gonchenko,et al.  Shilnikov’s Cross-map method and hyperbolic dynamics of three-dimensional Hénon-like maps , 2010 .

[4]  Robert L. Devaney,et al.  Shift automorphisms in the Hénon mapping , 1979, Hamiltonian Dynamical Systems.

[5]  M. Hénon A two-dimensional mapping with a strange attractor , 1976 .

[6]  M. Hénon,et al.  A two-dimensional mapping with a strange attractor , 1976 .

[7]  L. Shilnikov,et al.  Dynamical phenomena in systems with structurally unstable Poincare homoclinic orbits. , 1996, Chaos.

[8]  Valentin Afraimovich,et al.  Origin and structure of the Lorenz attractor , 1977 .

[9]  Laura Gardini,et al.  A DOUBLE LOGISTIC MAP , 1994 .

[10]  F. R. Marotto Snap-back repellers imply chaos in Rn , 1978 .

[11]  Ming-Chia Li,et al.  Topological horseshoes for perturbations of singular difference equations , 2006 .

[12]  L. Shilnikov,et al.  On dynamical properties of diffeomorphisms with homoclinic tangencies , 2005 .

[13]  L. Chua,et al.  Methods of qualitative theory in nonlinear dynamics , 1998 .

[14]  Yuri A. Kuznetsov,et al.  Generalized Hénon Map and Bifurcations of Homoclinic Tangencies , 2005, SIAM J. Appl. Dyn. Syst..

[15]  L. P. Šil'nikov,et al.  ON THREE-DIMENSIONAL DYNAMICAL SYSTEMS CLOSE TO SYSTEMS WITH A STRUCTURALLY UNSTABLE HOMOCLINIC CURVE. II , 1972 .

[16]  L. Gardini,et al.  Snap-back repellers in non-smooth functions , 2010 .

[17]  Piotr Zgliczynski,et al.  Topological Entropy for Multidimensional perturbations of One-Dimensional Maps , 2001, Int. J. Bifurc. Chaos.