Multigrid Methods for Tensor Structured Markov Chains with Low Rank Approximation

Tensor structured Markov chains are part of stochastic models of many practical applications, e.g., in the description of complex production or telephone networks. The most interesting question in Markov chain models is the determination of the stationary distribution as a description of the long term behavior of the system. This involves the computation of the eigenvector corresponding to the dominant eigenvalue or equivalently the solution of a singular linear system of equations. Due to the tensor structure of the models the dimension of the operators grows rapidly and a direct solution without exploiting the tensor structure becomes infeasible. Algebraic multigrid methods have proven to be efficient when dealing with Markov chains without using tensor structure. In this work we present an approach to adapt the algebraic multigrid framework to the tensor frame, not only using the tensor structure in matrix-vector multiplications, but also tensor structured coarse-grid operators and tensor representations of the solution vector.

[1]  Hans De Sterck,et al.  An Adaptive Algebraic Multigrid Algorithm for Low-Rank Canonical Tensor Decomposition , 2013, SIAM J. Sci. Comput..

[2]  Ivan V. Oseledets,et al.  Solution of Linear Systems and Matrix Inversion in the TT-Format , 2012, SIAM J. Sci. Comput..

[3]  Lars Grasedyck,et al.  Hierarchical Singular Value Decomposition of Tensors , 2010, SIAM J. Matrix Anal. Appl..

[4]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[5]  Tugrul Dayar,et al.  Iterative methods based on splittings for stochastic automata networks , 1998, Eur. J. Oper. Res..

[6]  W. Stewart,et al.  The Kronecker product and stochastic automata networks , 2004 .

[7]  S. V. Dolgov,et al.  ALTERNATING MINIMAL ENERGY METHODS FOR LINEAR SYSTEMS IN HIGHER DIMENSIONS∗ , 2014 .

[8]  Robert D. Falgout,et al.  Compatible Relaxation and Coarsening in Algebraic Multigrid , 2009, SIAM J. Sci. Comput..

[9]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[10]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[11]  Daniel Kressner,et al.  Algorithm 941 , 2014 .

[12]  Thomas A. Manteuffel,et al.  Towards Adaptive Smoothed Aggregation (AlphaSA) for Nonsymmetric Problems , 2010, SIAM J. Sci. Comput..

[13]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[14]  Dmitry V. Savostyanov QTT-rank-one vectors with QTT-rank-one and full-rank Fourier images , 2012 .

[15]  P. Vanek Fast multigrid solver , 1995 .

[16]  S. McCormick,et al.  Towards Adaptive Smoothed Aggregation (αsa) for Nonsymmetric Problems * , 2022 .

[17]  Daniel Kressner,et al.  Low-Rank Tensor Methods with Subspace Correction for Symmetric Eigenvalue Problems , 2014, SIAM J. Sci. Comput..

[18]  Wolfgang Hackbusch,et al.  A Multigrid Method to Solve Large Scale Sylvester Equations , 2007, SIAM J. Matrix Anal. Appl..

[19]  A.Brandt,et al.  A Bootstrap Algebraic Multilevel method for Markov Chains , 2010, 1004.1451.

[20]  Thomas A. Manteuffel,et al.  Operator‐based interpolation for bootstrap algebraic multigrid , 2010, Numer. Linear Algebra Appl..

[21]  Karsten Kahl,et al.  An Adaptively Constructed Algebraic Multigrid Preconditioner for Irreducible Markov Chains , 2014, 1402.4005.

[22]  W. Hackbusch Iterative Solution of Large Sparse Systems of Equations , 1993 .

[23]  H. Kiers Towards a standardized notation and terminology in multiway analysis , 2000 .

[24]  Thomas A. Manteuffel,et al.  Smoothed Aggregation Multigrid for Markov Chains , 2010, SIAM J. Sci. Comput..

[25]  W. Hackbusch,et al.  A New Scheme for the Tensor Representation , 2009 .

[26]  Peter Buchholz,et al.  Structured analysis approaches for large Markov chains , 1999 .

[27]  L. Kaufman Matrix Methods for Queuing Problems , 1983 .

[28]  Thomas A. Manteuffel,et al.  Algebraic Multigrid for Markov Chains , 2010, SIAM J. Sci. Comput..

[29]  Peter Buchholz,et al.  Comparison of Multilevel Methods for Kronecker-based Markovian Representations , 2004, Computing.

[30]  Thomas A. Manteuffel,et al.  Multilevel Adaptive Aggregation for Markov Chains, with Application to Web Ranking , 2008, SIAM J. Sci. Comput..

[31]  Ivan V. Oseledets,et al.  Approximation of 2d˟2d Matrices Using Tensor Decomposition , 2010, SIAM J. Matrix Anal. Appl..

[32]  Peter Buchholz,et al.  On the Convergence of a Class of Multilevel Methods for Large Sparse Markov Chains , 2007, SIAM J. Matrix Anal. Appl..

[33]  Achi Brandt,et al.  Bootstrap AMG , 2011, SIAM J. Sci. Comput..

[34]  Ralf Hiptmair,et al.  Analysis of tensor product multigrid , 2001, Numerical Algorithms.

[35]  Daniel Kressner,et al.  Low-Rank Tensor Methods for Communicating Markov Processes , 2014, QEST.

[36]  Daniel Kressner,et al.  Low-Rank Tensor Krylov Subspace Methods for Parametrized Linear Systems , 2011, SIAM J. Matrix Anal. Appl..

[37]  Peter Buchholz,et al.  Multilevel Solutions for Structured Markov Chains , 2000, SIAM J. Matrix Anal. Appl..

[38]  Brigitte Plateau,et al.  Stochastic Automata Networks , 2021, Introduction to the Numerical Solution of Markov Chains.

[39]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.