Long Wavelength Limit for the Quantum Euler-Poisson Equation

In this paper, we consider the long wavelength limit for the quantum Euler--Poisson equation. Under the Gardner--Morikawa transform, we derive the quantum Korteweg--de Vries (KdV) equation by a reductive perturbation method. We show that the KdV dynamics can be seen at time interval of order $O(\epsilon^{-3/2})$. When the nondimensional quantum parameter $H=2$, it reduces to the inviscid Burgers equation.

[1]  J. Willems Nonlinear harmonic analysis. , 1968 .

[2]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[3]  D. R. Nicholson Introduction to Plasma Theory , 1983 .

[4]  A. Majda Compressible fluid flow and systems of conservation laws in several space variables , 1984 .

[5]  Tosio Kato,et al.  Commutator estimates and the euler and navier‐stokes equations , 1988 .

[6]  Tosio Kato,et al.  Liapunov functions and monotonicity in the Navier-Stokes equation , 1990 .

[7]  Luis Vega,et al.  Well-posedness of the initial value problem for the Korteweg-de Vries equation , 1991 .

[8]  C. Kenig,et al.  Well‐posedness and scattering results for the generalized korteweg‐de vries equation via the contraction principle , 1993 .

[9]  E. Grenier Pseudo-differential energy estimates of singular perturbations , 1997 .

[10]  Yan Guo,et al.  Smooth Irrotational Flows in the Large to the Euler–Poisson System in R3+1 , 1998 .

[11]  E. Grenier,et al.  Quasineutral limit of an euler-poisson system arising from plasma physics , 2000 .

[12]  Guido Schneider,et al.  The long‐wave limit for the water wave problem I. The case of zero surface tension , 2000 .

[13]  Shlomo Engelberg,et al.  Critical Thresholds in Euler-Poisson Equations , 2001, math/0112014.

[14]  Eitan Tadmor,et al.  Spectral Dynamics of the Velocity Gradient Field¶in Restricted Flows , 2002 .

[15]  A. Siamj. CRITICAL THRESHOLDS IN 2D RESTRICTED EULER–POISSON EQUATIONS∗ , 2002 .

[16]  Hailiang Liu,et al.  Critical Thresholds in 2D Restricted Euler-Poisson Equations , 2003, SIAM J. Appl. Math..

[17]  F. Haas,et al.  Quantum ion-acoustic waves , 2003 .

[18]  Hailiang Liu,et al.  KdV dynamics in the plasma-sheath transition , 2004, Appl. Math. Lett..

[19]  Benjamin Texier,et al.  Derivation of the Zakharov Equations , 2006, math/0603092.

[20]  With Invariant Submanifolds,et al.  Systems of Conservation Laws , 2009 .

[21]  Yan Guo,et al.  Global Hilbert Expansion for the Vlasov-Poisson-Boltzmann System , 2009, 0910.5512.

[22]  D. Korteweg,et al.  On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves , 2011 .

[23]  Dong Li,et al.  Smooth global solutions for the two-dimensional Euler Poisson system , 2011, 1109.3882.

[24]  Yan Guo,et al.  Global Smooth Ion Dynamics in the Euler-Poisson System , 2010, 1003.3653.

[25]  Dong Li,et al.  The Cauchy problem for the two dimensional Euler-Poisson system , 2011, 1109.5980.

[26]  C. S. Gardner,et al.  Similarity in the Asymptotic Behavior of Collision-Free Hydromagnetic Waves and Water Waves , 2011 .

[27]  Yan Guo,et al.  KdV Limit of the Euler–Poisson System , 2012, 1202.1830.

[28]  Juhi Jang,et al.  The two-dimensional Euler-Poisson system with spherical symmetry , 2011, 1109.2643.

[29]  Xueke Pu,et al.  Dispersive Limit of the Euler-Poisson System in Higher Dimensions , 2012, SIAM J. Math. Anal..

[30]  B. Guo,et al.  Quasineutral limit of the Euler-Poisson equation for a cold, ion-acoustic plasma , 2013, 1304.0187.

[31]  Daniel Han-Kwan From Vlasov–Poisson to Korteweg–de Vries and Zakharov–Kuznetsov , 2012, 1209.3212.

[32]  J. Saut,et al.  The Cauchy Problem for the Euler–Poisson System and Derivation of the Zakharov–Kuznetsov Equation , 2012, 1205.5080.

[33]  B. Guo,et al.  Quasineutral limit of the pressureless Euler-Poisson equation for ions , 2016 .

[34]  Yan Guo,et al.  Absence of Shocks for One Dimensional Euler–Poisson System , 2015, 1502.00398.