Global optimization of polynomials using generalized critical values and sums of squares

Let &Xmacr; = [<i>X</i><sub>1</sub>, ..., <i>X</i><sub><i>n</i></sub>] and <i>f</i> ∈ R[&Xmacr;]. We consider the problem of computing the global infimum of <i>f</i> when <i>f</i> is bounded below. For <b>A</b> ∈ GL<sub><i>n</i></sub>(C), we denote by <i>f</i><sup><b>A</b></sup> the polynomial <i>f</i>(<b>A</b> &Xmacr;). Fix a number <i>M</i> ∈ R greater than inf<sub><i>x</i>∈R<sup>n</sup></sub> <i>f</i>(<i>x</i>). We prove that there exists a Zariski-closed subset A [equation] GL<sub><i>n</i></sub>(C) such that for all <b>A</b> ∈ GL<sub><i>n</i></sub>(Q) \ A, we have <i>f</i><sup><b>A</b></sup> ≥ 0 on R<sup><i>n</i></sup> if and only if for all ε > 0, there exist sums of squares of polynomials <i>s</i> and <i>t</i> in R[&Xmacr;] and polynomials [Equation]. Hence we can formulate the original optimization problems as semidefinite programs which can be solved efficiently in Matlab. Some numerical experiments are given. We also discuss how to exploit the sparsity of SDP problems to overcome the ill-conditionedness of SDP problems when the infimum is not attained.

[1]  S. Griffis EDITOR , 1997, Journal of Navigation.

[2]  Feng Guo SDPTools: High Precision SDP Solver in Maple , 2011, ArXiv.

[3]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[4]  Éric Schost,et al.  Properness Defects of Projections and Computation of at Least One Point in Each Connected Component of a Real Algebraic Set , 2004, Discret. Comput. Geom..

[5]  James Demmel,et al.  Minimizing Polynomials via Sum of Squares over the Gradient Ideal , 2004, Math. Program..

[6]  Johan Efberg,et al.  YALMIP : A toolbox for modeling and optimization in MATLAB , 2004 .

[7]  Éric Schost,et al.  Polar varieties and computation of one point in each connected component of a smooth real algebraic set , 2003, ISSAC '03.

[8]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[9]  Olga Taussky-Todd SOME CONCRETE ASPECTS OF HILBERT'S 17TH PROBLEM , 1996 .

[10]  J. van Leeuwen,et al.  Discrete and Computational Geometry , 2002, Lecture Notes in Computer Science.

[11]  Mohab Safey El Din,et al.  Testing Sign Conditions on a Multivariate Polynomial and Applications , 2007, Math. Comput. Sci..

[12]  Bin Li,et al.  Exact certification of global optimality of approximate factorizations via rationalizing sums-of-squares with floating point scalars , 2008, ISSAC '08.

[13]  Masakazu Muramatsu,et al.  SparsePOP: a Sparse Semidefinite Programming Relaxation of Polynomial Optimization Problems , 2005 .

[14]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[15]  Bin Li,et al.  Exact certification in global polynomial optimization via sums-of-squares of rational functions with rational coefficients , 2012, J. Symb. Comput..

[16]  Mohab Safey El Din,et al.  Computing the global optimum of a multivariate polynomial over the reals , 2008, ISSAC '08.

[17]  Grigoriy Blekherman There are significantly more nonegative polynomials than sums of squares , 2003, math/0309130.

[18]  Peter J Seiler,et al.  SOSTOOLS: Sum of squares optimization toolbox for MATLAB , 2002 .

[19]  Monique Laurent,et al.  Semidefinite Approximations for Global Unconstrained Polynomial Optimization , 2005, SIAM J. Optim..

[20]  Anneli Lax,et al.  On sums of squares , 1978 .

[21]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[22]  K. Kurdyka,et al.  SEMIALGEBRAIC SARD THEOREM FOR GENERALIZED CRITICAL VALUES , 2000 .

[23]  Ha Huy Vui,et al.  Global Optimization of Polynomials Using the Truncated Tangency Variety and Sums of Squares , 2008, SIAM J. Optim..

[24]  Yurii Nesterov,et al.  Squared Functional Systems and Optimization Problems , 2000 .

[25]  B. Reznick Extremal PSD forms with few terms , 1978 .

[26]  Markus Schweighofer Global Optimization of Polynomials Using Gradient Tentacles and Sums of Squares , 2006, SIAM J. Optim..

[27]  Didier Henrion,et al.  GloptiPoly: Global optimization over polynomials with Matlab and SeDuMi , 2003, TOMS.