Approximations for λ-Colorings of Graphs 201

A λ-coloring of a graph G is an assignment of colors from the integer set {0, . . . , λ} to the vertices of the graph G such that vertices at distance of at most two get different colors and adjacent vertices get colors which are at least two apart. The problem of finding λ-colorings with optimal or near-optimal λ arises in the context of radio frequency assignment. We show that the problem of finding the minimum λ for planar graphs, bipartite graphs, chordal graphs and split graphs is NP-complete. We also give approximation algorithms for λ-coloring and compute upper bounds on the best possible λ for outerplanar graphs, graphs of treewidth k, permutation and split graphs. Except in the case of split graphs, all the above bounds for λ are linear in , the maximum degree of the graph. For split graphs, we give a bound of 1 2 1.5 + 2 and we show that there are split graphs G with λ(G) = ( 1.5). Similar results are also given for variations of the λ-coloring problem.

[1]  Alan A. Bertossi,et al.  Code assignment for hidden terminal interference avoidance in multihop packet radio networks , 1992, [Proceedings] IEEE INFOCOM '92: The Conference on Computer Communications.

[2]  Frank Harary,et al.  Graph Theory , 2016 .

[3]  C. Q. Lee,et al.  The Computer Journal , 1958, Nature.

[4]  Imrich Chlamtac,et al.  Distributed Nodes Organization Algorithm for Channel Access in a Multihop Dynamic Radio Network , 1987, IEEE Transactions on Computers.

[5]  Jan van Leeuwen,et al.  Approximations for -Coloring of Graphs , 2004 .

[6]  Imrich Chlamtac,et al.  On Broadcasting in Radio Networks - Problem Analysis and Protocol Design , 1985, IEEE Transactions on Communications.

[7]  Rossella Petreschi,et al.  L(2, 1)-Coloring Matrogenic Graphs , 2002, LATIN.

[8]  Roger K. Yeh THE EDGE SPAN OF DISTANCE TWO LABELLINGS OF GRAPHS , 2000 .

[9]  Jerrold R. Griggs,et al.  Labelling Graphs with a Condition at Distance 2 , 1992, SIAM J. Discret. Math..

[10]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[11]  J. van Leeuwen STACS 2000 , 2000, Lecture Notes in Computer Science.

[12]  Hans L. Bodlaender,et al.  A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..

[13]  Mohammad R. Salavatipour,et al.  Frequency Channel Assignment on Planar Networks , 2002, ESA.

[14]  Goos Kant,et al.  Augmenting Outerplanar Graphs , 1996, J. Algorithms.

[15]  福地 康弘 Graph labeling problems , 2001 .

[16]  Daphne Der-Fen Liu,et al.  On L(d, 1)-labelings of graphs , 2000, Discret. Math..

[17]  John P. Georges,et al.  Relating path coverings to vertex labellings with a condition at distance two , 1994, Discret. Math..

[18]  Tarek Makansi,et al.  Transmitter-Oriented Code Assignment for Multihop Packet Radio , 1987, IEEE Trans. Commun..

[19]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .

[20]  Alan A. Bertossi,et al.  Efficient use of radio spectrum in wireless networks with channel separation between close stations , 2000, DIALM '00.

[21]  David S. Johnson,et al.  Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..

[22]  Paul G. Spirakis,et al.  NP-ompleteness Results and EÆ ient Approximations for Radio oloring in Planar Graphs , 2000 .

[23]  G. Chang,et al.  Labeling graphs with a condition at distance two , 2005 .

[24]  Denise Sakai Troxell Labeling Chordal Graphs: Distance Two Condition , 1994, SIAM Journal on Discrete Mathematics.

[25]  Roberto Battiti,et al.  Assigning codes in wireless networks: bounds and scaling properties , 1999, Wirel. Networks.

[26]  Rossella Petreschi,et al.  L(2,1)-labeling of planar graphs , 2001, DIALM '01.

[27]  Gerard J. Chang,et al.  Distance-two labelings of graphs , 2003, Eur. J. Comb..

[28]  Jan van Leeuwen,et al.  Finding a bigtriangleup-regular supergraph of minimum order , 2003, Discret. Appl. Math..

[29]  Xiao Zhou,et al.  Generalized Vertex-Colorings of Partial K-Trees , 2000 .

[30]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[31]  Gerard J. Chang,et al.  The L(2, 1)-Labeling Problem on Graphs , 1996, SIAM J. Discret. Math..

[32]  Hans L. Bodlaender,et al.  A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.

[33]  John P. Georges,et al.  On the size of graphs labeled with a condition at distance two , 1996, J. Graph Theory.