Approximations for λ-Colorings of Graphs 201
暂无分享,去创建一个
Jan van Leeuwen | Richard B. Tan | Ton Kloks | Hans L. Bodlaender | R. B. Tan | H. Bodlaender | T. Kloks | J. Leeuwen
[1] Alan A. Bertossi,et al. Code assignment for hidden terminal interference avoidance in multihop packet radio networks , 1992, [Proceedings] IEEE INFOCOM '92: The Conference on Computer Communications.
[2] Frank Harary,et al. Graph Theory , 2016 .
[3] C. Q. Lee,et al. The Computer Journal , 1958, Nature.
[4] Imrich Chlamtac,et al. Distributed Nodes Organization Algorithm for Channel Access in a Multihop Dynamic Radio Network , 1987, IEEE Transactions on Computers.
[5] Jan van Leeuwen,et al. Approximations for -Coloring of Graphs , 2004 .
[6] Imrich Chlamtac,et al. On Broadcasting in Radio Networks - Problem Analysis and Protocol Design , 1985, IEEE Transactions on Communications.
[7] Rossella Petreschi,et al. L(2, 1)-Coloring Matrogenic Graphs , 2002, LATIN.
[8] Roger K. Yeh. THE EDGE SPAN OF DISTANCE TWO LABELLINGS OF GRAPHS , 2000 .
[9] Jerrold R. Griggs,et al. Labelling Graphs with a Condition at Distance 2 , 1992, SIAM J. Discret. Math..
[10] M. Golumbic. Algorithmic graph theory and perfect graphs , 1980 .
[11] J. van Leeuwen. STACS 2000 , 2000, Lecture Notes in Computer Science.
[12] Hans L. Bodlaender,et al. A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..
[13] Mohammad R. Salavatipour,et al. Frequency Channel Assignment on Planar Networks , 2002, ESA.
[14] Goos Kant,et al. Augmenting Outerplanar Graphs , 1996, J. Algorithms.
[15] 福地 康弘. Graph labeling problems , 2001 .
[16] Daphne Der-Fen Liu,et al. On L(d, 1)-labelings of graphs , 2000, Discret. Math..
[17] John P. Georges,et al. Relating path coverings to vertex labellings with a condition at distance two , 1994, Discret. Math..
[18] Tarek Makansi,et al. Transmitter-Oriented Code Assignment for Multihop Packet Radio , 1987, IEEE Trans. Commun..
[19] R. Möhring. Algorithmic graph theory and perfect graphs , 1986 .
[20] Alan A. Bertossi,et al. Efficient use of radio spectrum in wireless networks with channel separation between close stations , 2000, DIALM '00.
[21] David S. Johnson,et al. Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..
[22] Paul G. Spirakis,et al. NP-ompleteness Results and EÆ ient Approximations for Radio oloring in Planar Graphs , 2000 .
[23] G. Chang,et al. Labeling graphs with a condition at distance two , 2005 .
[24] Denise Sakai Troxell. Labeling Chordal Graphs: Distance Two Condition , 1994, SIAM Journal on Discrete Mathematics.
[25] Roberto Battiti,et al. Assigning codes in wireless networks: bounds and scaling properties , 1999, Wirel. Networks.
[26] Rossella Petreschi,et al. L(2,1)-labeling of planar graphs , 2001, DIALM '01.
[27] Gerard J. Chang,et al. Distance-two labelings of graphs , 2003, Eur. J. Comb..
[28] Jan van Leeuwen,et al. Finding a bigtriangleup-regular supergraph of minimum order , 2003, Discret. Appl. Math..
[29] Xiao Zhou,et al. Generalized Vertex-Colorings of Partial K-Trees , 2000 .
[30] A. Brandstädt,et al. Graph Classes: A Survey , 1987 .
[31] Gerard J. Chang,et al. The L(2, 1)-Labeling Problem on Graphs , 1996, SIAM J. Discret. Math..
[32] Hans L. Bodlaender,et al. A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.
[33] John P. Georges,et al. On the size of graphs labeled with a condition at distance two , 1996, J. Graph Theory.