Asymptotic expansions and fast computation of oscillatory Hilbert transforms

In this paper, we study the asymptotics and fast computation of the one-sided oscillatory Hilbert transforms of the form $$\begin{aligned} H^{+}(f(t)e^{i\omega t})(x)=-\!\!\!\!\!\!\int \nolimits _{\!\!\!0}^{\infty }e^{i\omega t}\frac{f(t)}{t-x}\,dt,\quad \omega >0,\quad x\ge 0, \end{aligned}$$where the bar indicates the Cauchy principal value and $$f$$ is a real-valued function with analytic continuation in the first quadrant, except possibly a branch point of algebraic type at the origin. When $$x=0$$, the integral is interpreted as a Hadamard finite-part integral, provided it is divergent. Asymptotic expansions in inverse powers of $$\omega $$ are derived for each fixed $$x\ge 0$$, which clarify the large $$\omega $$ behavior of this transform. We then present efficient and affordable approaches for numerical evaluation of such oscillatory transforms. Depending on the position of $$x$$, we classify our discussion into three regimes, namely, $$x=\mathcal O (1)$$ or $$x\gg 1$$, $$0<x\ll 1$$ and $$x=0$$. Numerical experiments show that the convergence of the proposed methods greatly improve when the frequency $$\omega $$ increases. Some extensions to oscillatory Hilbert transforms with Bessel oscillators are briefly discussed as well.

[1]  James S. Harris,et al.  Tables of integrals , 1998 .

[2]  S. Xiang Efficient Filon-type methods for $$\int_a^bf(x)\,{\rm e}^{{\rm i}\omega g(x)}\,{\rm d}x$$ , 2007 .

[3]  K. S. Kölbig,et al.  Errata: Milton Abramowitz and Irene A. Stegun, editors, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series, No. 55, U.S. Government Printing Office, Washington, D.C., 1994, and all known reprints , 1972 .

[4]  Robert Piessens,et al.  On the computation of Fourier transforms of singular functions , 1992 .

[5]  F. W. J. Olver,et al.  Numerical solution of second-order linear difference equations , 1967 .

[6]  A. Iserles,et al.  Efficient quadrature of highly oscillatory integrals using derivatives , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[7]  Daan Huybrechs,et al.  Complex Gaussian quadrature for oscillatory integral transforms , 2013 .

[8]  Roderick Wong,et al.  Quadrature formulas for oscillatory integral transforms , 1982 .

[9]  Lloyd N. Trefethen,et al.  Barycentric Lagrange Interpolation , 2004, SIAM Rev..

[10]  J. Oliver,et al.  Relative error propagation in the recursive solution of linear recurrence relations , 1967 .

[11]  Shuhuang Xiang,et al.  Uniform approximations to Cauchy principal value integrals of oscillatory functions , 2009, Appl. Math. Comput..

[12]  Roderick Wong Asymptotic Expansion of the Hilbert Transform , 1980 .

[13]  J. N. Lyness The Euler Maclaurin expansion for the Cauchy Principal Value integral , 1985 .

[14]  W. Morven Gentleman Implementing Clenshaw-Curtis quadrature, I methodology and experience , 1972, CACM.

[15]  David Levin,et al.  Procedures for computing one- and two-dimensional integrals of functions with rapid irregular oscillations , 1982 .

[16]  Nico M. Temme,et al.  Numerical methods for special functions , 2007 .

[17]  W. Morven Gentleman,et al.  Implementing Clenshaw-Curtis quadrature, II computing the cosine transformation , 1972, Commun. ACM.

[18]  D. F. Hays,et al.  Table of Integrals, Series, and Products , 1966 .

[19]  A. Fokas,et al.  Complex Variables: Introduction and Applications , 1997 .

[20]  Paul A. Martin,et al.  On the null-field equations for water-wave radiation problems , 1981, Journal of Fluid Mechanics.

[21]  Roderick Wong,et al.  Asymptotic approximations of integrals , 1989, Classics in applied mathematics.

[22]  Sheehan Olver,et al.  Computing the Hilbert transform and its inverse , 2011, Math. Comput..

[23]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[24]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[25]  Sheehan Olver,et al.  Moment-free numerical integration of highly oscillatory functions , 2006 .

[26]  C. W. Clenshaw,et al.  A method for numerical integration on an automatic computer , 1960 .

[27]  F. Ursell Integrals with a large parameter: Hilbert transforms , 1983 .

[28]  A. Iserles,et al.  On Quadrature Methods for Highly Oscillatory Integrals and Their Implementation , 2004 .

[29]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[30]  Tatsuo Torii,et al.  An automatic quadrature for Cauchy principal value integrals , 1991 .

[31]  M. R. Capobianco,et al.  On quadrature for Cauchy principal value integrals of oscillatory functions , 2003 .

[32]  Shuhuang Xiang,et al.  Efficient Filon-type methods for (∫abf(x), eiωg(x), dx) , 2007, Numerische Mathematik.

[33]  Christoph W. Ueberhuber,et al.  Computational Integration , 2018, An Introduction to Scientific, Symbolic, and Graphical Computation.

[34]  Shuhuang Xiang,et al.  On the evaluation of Cauchy principal value integrals of oscillatory functions , 2010, J. Comput. Appl. Math..

[35]  Ivan G. Graham,et al.  Stability and error estimates for Filon–Clenshaw–Curtis rules for highly oscillatory integrals , 2011 .

[36]  Giovanni Monegato,et al.  The Euler-Maclaurin expansion and finite-part integrals , 1998, Numerische Mathematik.

[37]  Geir T. Helleloid,et al.  Numerical evaluation of Hilbert transforms for oscillatory functions: A convergence accelerator approach , 2002 .

[38]  Sheehan Olver,et al.  GMRES for the Differentiation Operator , 2009, SIAM J. Numer. Anal..

[39]  Gradimir V. Milovanović,et al.  Numerical Calculation of Integrals Involving Oscillatory and Singular Kernels and Some Applications of Quadratures , 1998 .

[40]  Daan Huybrechs,et al.  On the Evaluation of Highly Oscillatory Integrals by Analytic Continuation , 2006, SIAM J. Numer. Anal..

[41]  Xiaojun Chen,et al.  Error bounds for approximation in Chebyshev points , 2010, Numerische Mathematik.

[42]  G. E. Okecha Quadrature formulae for Cauchy principal value integrals of oscillatory kind , 1987 .

[43]  David Levin,et al.  Fast integration of rapidly oscillatory functions , 1996 .

[44]  Athanassios S. Fokas,et al.  Complex Variables: Contents , 2003 .

[45]  Daan Huybrechs,et al.  Complex Gaussian quadrature of oscillatory integrals , 2009, Numerische Mathematik.

[46]  J. R. Webster,et al.  A method to generate generalized quadrature rule for oscillatory integrals , 2000 .