Experimental and numerical study on the fracture process zone and fracture toughness determination for ISRM-suggested semi-circular bend rock specimen

Abstract The semi-circular bend (SCB) method suggested by International Society for Rock Mechanics (ISRM) is demonstrated to yield much conservative mode I fracture toughness. A large fracture process zone observed by both acoustic emission (AE) monitoring and numerical modeling is analyzed to be responsible for that phenomenon. Using numerically simulated effective crack lengths at the peak-load stage in the experiments, the measured toughness values are close to the level I fracture toughness. In addition, numerically simulated K-resistance curves are demonstrated to have great potential for determining the fracture toughness at the level II.

[1]  Feng Dai,et al.  Numerical Assessment of the Progressive Rock Fracture Mechanism of Cracked Chevron Notched Brazilian Disc Specimens , 2015, Rock Mechanics and Rock Engineering.

[2]  Soo-Ho Chang,et al.  Measurement of rock fracture toughness under modes I and II and mixed-mode conditions by using disc-type specimens , 2002 .

[3]  Zdeněk P. Bažant,et al.  Comprehensive concrete fracture tests: Size effects of Types 1 & 2, crack length effect and postpeak , 2013 .

[4]  M.R.M. Aliha,et al.  Geometry and size effects on fracture trajectory in a limestone rock under mixed mode loading , 2010 .

[5]  L. Tutluoglu,et al.  Investigation of proper specimen geometry for mode I fracture toughness testing with flattened Brazilian disc method , 2011 .

[6]  M. Ayatollahi,et al.  Size and Geometry Effects on Rock Fracture Toughness: Mode I Fracture , 2014, Rock Mechanics and Rock Engineering.

[7]  Huilin Xing,et al.  A three-dimensional numerical investigation of the fracture of rock specimens containing a pre-existing surface flaw , 2012 .

[8]  Joseph F Labuz,et al.  The fracture process zone in granite: evidence and effect , 1987 .

[9]  Shaoquan Kou,et al.  More accurate stress intensity factor derived by finite element analysis for the ISRM suggested rock fracture toughness specimen: CCNBD , 2003 .

[10]  M.R.M. Aliha,et al.  Geometry effects and statistical analysis of mode I fracture in guiting limestone , 2012 .

[11]  R. J. Fowell,et al.  Suggested method for determining mode I fracture toughness using Cracked Chevron Notched Brazilian Disc (CCNBD) specimens , 1995 .

[12]  Mihai O. Marasteanu,et al.  The fracture process zone in asphalt mixture at low temperature , 2010 .

[13]  B. Mohanty,et al.  Experimental calibration of stress intensity factors of the ISRM suggested cracked chevron-notched Brazilian disc specimen used for determination of mode-I fracture toughness , 2006 .

[14]  Xibing Li,et al.  Suggested Methods for Determining the Dynamic Strength Parameters and Mode-I Fracture Toughness of Rock Materials , 2012 .

[15]  T. Zhao,et al.  Numerical investigation of the progressive fracture mechanisms of four ISRM-suggested specimens for determining the mode I fracture toughness of rocks , 2015 .

[16]  Peter K. Kaiser,et al.  Numerical simulation of cumulative damage and seismic energy release during brittle rock failure-Part I: Fundamentals , 1998 .

[17]  Jian-Hong Wu,et al.  Fracture toughness analysis on cracked ring disks of anisotropic rock , 2008 .

[18]  S. Sloan,et al.  Numerical study of failure behaviour of pre-cracked rock specimens under conventional triaxial compression , 2014 .

[19]  A. K. Dube,et al.  Fracture toughness of rocks under sub-zero temperature conditions , 2000 .

[20]  B. Mohanty,et al.  Fracture Toughness Measurements and Acoustic Emission Activity in Brittle Rocks , 2006 .

[21]  A. Baghbanan,et al.  Measuring fracture toughness of crystalline marbles under modes I and II and mixed mode I–II loading conditions using CCNBD and HCCD specimens , 2011 .

[22]  W. Weibull A statistical theory of the strength of materials , 1939 .

[23]  M. Ayatollahi,et al.  Mode I fracture initiation in limestone by strain energy density criterion , 2012 .

[24]  Zong-qi Sun,et al.  Mode I fracture analysis of the double edge cracked Brazilian disk using a weight function method , 2001 .

[25]  Tao Zhao,et al.  Numerical Observation of Three-Dimensional Wing Cracking of Cracked Chevron Notched Brazilian Disc Rock Specimen Subjected to Mixed Mode Loading , 2015, Rock Mechanics and Rock Engineering.

[26]  L. Tutluoglu,et al.  Mode I fracture toughness determination with straight notched disk bending method , 2011 .

[27]  B. Mohanty,et al.  Fracture toughness anisotropy in granitic rocks , 2008 .

[28]  Y. Obara,et al.  ISRM-Suggested Method for Determining the Mode I Static Fracture Toughness Using Semi-Circular Bend Specimen , 2013, Rock Mechanics and Rock Engineering.

[29]  Wancheng Zhu,et al.  Numerical Modeling of Jointed Rock Under Compressive Loading Using X-ray Computerized Tomography , 2016, Rock Mechanics and Rock Engineering.

[30]  K. Matsui,et al.  Evaluation of Mode I Fracture Toughness Assisted by the Numerical Determination of K-Resistance , 2014, Rock Mechanics and Rock Engineering.

[31]  F. Ouchterlony Review of fracture toughness testing of rock , 1982 .

[32]  Chun An Tang,et al.  Microseismic monitoring and stability analysis of the left bank slope in Jinping first stage hydropower station in southwestern China , 2011 .

[33]  Chaoshui Xu,et al.  An Update on the Fracture Toughness Testing Methods Related to the Cracked Chevron-notched Brazilian Disk (CCNBD) Specimen , 2006 .

[34]  T. Anderson,et al.  Fracture mechanics - Fundamentals and applications , 2017 .

[35]  Nuwen Xu,et al.  Three-dimensional numerical evaluation of the progressive fracture mechanism of cracked chevron notched semi-circular bend rock specimens , 2015 .

[36]  Finn Ouchterlony,et al.  Suggested methods for determining the fracture toughness of rock , 1988 .

[37]  M.R.M. Aliha,et al.  Typical Upper Bound–Lower Bound Mixed Mode Fracture Resistance Envelopes for Rock Material , 2011, Rock Mechanics and Rock Engineering.

[38]  L. C. Schmidt,et al.  Rock fracture-toughness determination by the Brazilian test , 1993 .

[39]  K. Xia,et al.  Laboratory measurements of the rate dependence of the fracture toughness anisotropy of Barre granite , 2013 .

[40]  K. Chong,et al.  Fracture toughness testing of brittle materials using semi-circular bend (SCB) specimen , 2012 .

[41]  S. Mulmule,et al.  Fracture analysis of semi-circular and semi-circular-bend geometries , 1996 .

[42]  M. Kuruppu Fracture toughness measurement using chevron notched semi-circular bend specimen , 1997 .

[43]  L. Tutluoglu,et al.  Effects of geometric factors on mode I fracture toughness for modified ring tests , 2012 .

[44]  B. Mohanty,et al.  Experimental Calibration of ISRM Suggested Fracture Toughness Measurement Techniques in Selected Brittle Rocks , 2007 .

[45]  Y. X. Wang,et al.  Determination of dynamic rock Mode-I fracture parameters using cracked chevron notched semi-circular bend specimen , 2011 .