Development of the NAIST-Hand with Vision-based Tactile Fingertip Sensor

This paper introduces a multifingered robotic hand eNAIST-Handf and a grip force control by slip margin feedback. The developed prototype finger of the NAIST-hand has a new mechanism by which all 3 motors can be placed inside the palm without using wire-driven mechanisms. A method of grip force control is proposed using an incipient slip estimation. A new tactile sensor is designed to active the proposed control method by the NAIST-Hand. This sensor consists of a transparent semispherical gel, an embedded small camera, and a force sensor in order to implement the direct slip margin estimation. The structure and the principle of sensing are described.

[1]  Tsukasa Ogasawara,et al.  A novel pointing device utilizing the deformation of the fingertip , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[2]  Tsukasa Ogasawara,et al.  CPG-based manipulation: generation of rhythmic finger gaits from human observation , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[3]  Hiroyuki Shinoda,et al.  Ultrasonic emission tactile sensor for contact localization and characterization , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[4]  Claudio Melchiorri,et al.  Mechatronic design of innovative fingers for anthropomorphic robot hands , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[5]  H. Maekawa,et al.  A finger-shaped tactile sensor using an optical waveguide , 1993, Proceedings of IEEE Systems Man and Cybernetics Conference - SMC.

[6]  Mark R. Cutkosky,et al.  Sensing skin acceleration for slip and texture perception , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[7]  Hong Liu,et al.  DLR-Hand II: next generation of a dextrous robot hand , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[8]  Michael Vande Weghe,et al.  The ACT Hand: design of the skeletal structure , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[9]  J. Barbera,et al.  Contact mechanics , 1999 .

[10]  S. Gruber,et al.  Robot hands and the mechanics of manipulation , 1987, Proceedings of the IEEE.

[11]  Yoshiro Imai,et al.  Development of a high-speed multifingered hand system and its application to catching , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[12]  Wan Kyun Chung,et al.  The development of Postech Hand 5 , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[13]  Tsukasa Ogasawara,et al.  Grip force control for an elastic finger using vision-based incipient slip feedback , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[14]  Takashi Maeno,et al.  Control of grasping force by detecting stick/slip distribution at the curved surface of an elastic finger , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[15]  Roger W. Brockett,et al.  Reconstructing the Shape of a Deformable Membrane from Image Data , 2000, Int. J. Robotics Res..

[16]  Haruhisa Kawasaki,et al.  Educational–industrial complex development of an anthropomorphic robot hand 'Gifu hand' , 2001, Adv. Robotics.

[17]  Takashi Maeno,et al.  Analysis and design of a tactile sensor detecting strain distribution inside an elastic finger , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[18]  Mark R. Cutkosky,et al.  Estimating friction using incipient slip sensing during a manipulation task , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[19]  Tsukasa Ogasawara,et al.  Perception of human manipulation based on contact state transition , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[20]  K. Johnson Contact Mechanics: Frontmatter , 1985 .

[21]  Imin Kao,et al.  Modeling of Contact Mechanics and Friction Limit Surfaces for Soft Fingers in Robotics, with Experimental Results , 1999, Int. J. Robotics Res..

[22]  Raymond D. Mindlin,et al.  Compliance of elastic bodies in contact , 1949 .

[23]  Stephen C. Jacobsen,et al.  The UTAH/M.I.T. Dextrous Hand: Work in Progress , 1984 .

[24]  R. S. Johansson,et al.  Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects , 2004, Experimental Brain Research.