Confronting intractability via parameters

Abstract One approach to confronting computational hardness is to try to understand the contribution of various parameters to the running time of algorithms and the complexity of computational tasks. Almost no computational tasks in real life are specified by their size alone. It is not hard to imagine that some parameters contribute more intractability than others and it seems reasonable to develop a theory of computational complexity which seeks to exploit this fact. Such a theory should be able to address the needs of practitioners in algorithmics. The last twenty years have seen the development of such a theory. This theory has a large number of successes in terms of a rich collection of algorithmic techniques, both practical and theoretical, and a fine-grained intractability theory. Whilst the theory has been widely used in a number of areas of applications including computational biology, linguistics, VLSI design, learning theory and many others, knowledge of the area is highly varied. We hope that this article will show the basic theory and point at the wide array of techniques available. Naturally the treatment is condensed, and the reader who wants more should go to the texts of Downey and Fellows (1999) [2] , Flum and Grohe (2006) [59] , Niedermeier (2006) [28] , and the upcoming undergraduate text (Downey and Fellows 2012) [278] .

[1]  Michael R. Fellows,et al.  Sparse Parameterized Problems , 1996, Ann. Pure Appl. Log..

[2]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[3]  Paul D. Seymour,et al.  Spanning trees with many leaves , 2001, J. Graph Theory.

[4]  Sanjeev Arora,et al.  Nearly linear time approximation schemes for Euclidean TSP and other geometric problems , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[5]  Michael R. Fellows,et al.  FPT is P-Time Extremal Structure I , 2005, ACiD.

[6]  Kord Eickmeyer,et al.  Approximation of Natural W[P]-Complete Minimisation Problems Is Hard , 2008, 2008 23rd Annual IEEE Conference on Computational Complexity.

[7]  Bruce A. Reed,et al.  Odd cycle packing , 2010, STOC '10.

[8]  Fedor V. Fomin,et al.  Beyond bidimensionality: Parameterized subexponential algorithms on directed graphs , 2010, Inf. Comput..

[9]  Rolf Niedermeier,et al.  Fixed Parameter Algorithms for DOMINATING SET and Related Problems on Planar Graphs , 2002, Algorithmica.

[10]  Frederic Dorn,et al.  Designing Subexponential Algorithms: Problems, Techniques & Structures , 2007 .

[11]  Rolf Niedermeier,et al.  Polynomial-time data reduction for dominating set , 2002, JACM.

[12]  Erik D. Demaine,et al.  Fixed-parameter algorithms for (k, r)-center in planar graphs and map graphs , 2005, TALG.

[13]  Stephan Kreutzer,et al.  Computing excluded minors , 2008, SODA '08.

[14]  Michael R. Fellows,et al.  FIXED-PARAMETER TRACTABILITY AND COMPLETENESS , 2022 .

[15]  Dimitrios M. Thilikos,et al.  Dominating sets in planar graphs: branch-width and exponential speed-up , 2003, SODA '03.

[16]  Liming Cai,et al.  Fixed-Parameter Approximation: Conceptual Framework and Approximability Results , 2010, Algorithmica.

[17]  Klaus Jansen,et al.  Polynomial-Time Approximation Schemes for Geometric Intersection Graphs , 2005, SIAM J. Comput..

[18]  Jan van Leeuwen,et al.  Graph Algorithms , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[19]  Maria J. Serna,et al.  Cutwidth I: A linear time fixed parameter algorithm , 2005, J. Algorithms.

[20]  Rolf Niedermeier,et al.  Upper Bounds for Vertex Cover Further Improved , 1999, STACS.

[21]  Omid Amini,et al.  Implicit Branching and Parameterized Partial Cover Problems (Extended Abstract) , 2008, FSTTCS.

[22]  Hans L. Bodlaender,et al.  Vertex Cover Kernelization Revisited , 2010, Theory of Computing Systems.

[23]  Rolf Niedermeier,et al.  Tree decompositions of graphs: Saving memory in dynamic programming , 2004, Discret. Optim..

[24]  Michael R. Fellows,et al.  An Improved Fixed-Parameter Algorithm for Vertex Cover , 1998, Inf. Process. Lett..

[25]  Saket Saurabh,et al.  The Budgeted Unique Coverage Problem and Color-Coding , 2009, CSR.

[26]  Marc Thurley,et al.  Kernelizations for Parameterized Counting Problems , 2007, TAMC.

[27]  Jan van Leeuwen,et al.  Handbook of Theoretical Computer Science, Vol. A: Algorithms and Complexity , 1994 .

[28]  Dimitrios M. Thilikos,et al.  Subexponential parameterized algorithms for degree-constrained subgraph problems on planar graphs , 2010, J. Discrete Algorithms.

[29]  Grzegorz Rozenberg,et al.  Developments in Language Theory II , 2002 .

[30]  Michael R. Fellows,et al.  An O(2O(k)n3) FPT Algorithm for the Undirected Feedback Vertex Set Problem , 2005, COCOON.

[31]  Petr A. Golovach,et al.  Paths of Bounded Length and Their Cuts: Parameterized Complexity and Algorithms , 2009, IWPEC.

[32]  Moni Naor,et al.  On the Compressibility of NP Instances and Cryptographic Applications , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[33]  Gregory Gutin,et al.  Systems of Linear Equations over F2 and Problems Parameterized above Average , 2010, SWAT.

[34]  Alexander Vardy,et al.  The Parametrized Complexity of Some Fundamental Problems in Coding Theory , 1999, SIAM J. Comput..

[35]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[36]  Fedor V. Fomin,et al.  Efficient Exact Algorithms on Planar Graphs: Exploiting Sphere Cut Decompositions , 2010, Algorithmica.

[37]  Jörg Flum,et al.  Bounded fixed-parameter tractability and log2n nondeterministic bits , 2004, J. Comput. Syst. Sci..

[38]  Dimitrios M. Thilikos,et al.  Subexponential parameterized algorithms , 2008, Comput. Sci. Rev..

[39]  Hisao Tamaki,et al.  Optimal branch-decomposition of planar graphs in O(n3) Time , 2005, TALG.

[40]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[41]  Harry Buhrman,et al.  NP-Hard Sets Are Exponentially Dense Unless coNP C NP/poly , 2008, 2008 23rd Annual IEEE Conference on Computational Complexity.

[42]  Jianer Chen,et al.  A Polynomial Time Approximation Scheme for General Multiprocessor Job Scheduling , 2001, SIAM J. Comput..

[43]  Mihalis Yannakakis,et al.  On limited nondeterminism and the complexity of the V-C dimension , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.

[44]  Dimitrios M. Thilikos,et al.  Fast Subexponential Algorithm for Non-local Problems on Graphs of Bounded Genus , 2006, SWAT.

[45]  Leo van Iersel,et al.  Every ternary permutation constraint satisfaction problem parameterized above average has a kernel with a quadratic number of variables , 2012, J. Comput. Syst. Sci..

[46]  Dimitrios M. Thilikos,et al.  Tight Bounds for Linkages in Planar Graphs , 2011, ICALP.

[47]  Yossi Azar,et al.  Proceedings of the 14th conference on Annual European Symposium - Volume 14 , 2006 .

[48]  Michael R. Fellows,et al.  Fixed-Parameter Tractability and Completeness IV: On Completeness for W[P] and PSPACE Analogues , 1995, Ann. Pure Appl. Log..

[49]  Peter van Emde Boas,et al.  On tape versus core an application of space efficient perfect hash functions to the invariance of space , 1984, STOC '84.

[50]  Paul Wollan,et al.  Finding topological subgraphs is fixed-parameter tractable , 2010, STOC '11.

[51]  Sanjeev Khanna,et al.  A PTAS for the multiple knapsack problem , 2000, SODA '00.

[52]  Dimitrios M. Thilikos,et al.  Faster Fixed-Parameter Tractable Algorithms for Matching and Packing Problems , 2008, Algorithmica.

[53]  Martin Grohe,et al.  Logic, graphs, and algorithms , 2007, Logic and Automata.

[54]  Joachim Kneis,et al.  Courcelle's theorem - A game-theoretic approach , 2011, Discret. Optim..

[55]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[56]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[57]  Sebastian Böcker,et al.  Going weighted: Parameterized algorithms for cluster editing , 2008, Theor. Comput. Sci..

[58]  Michael R. Fellows,et al.  Fixed-Parameter Tractability and Completeness II: On Completeness for W[1] , 1995, Theor. Comput. Sci..

[59]  Rolf Niedermeier,et al.  Linear Problem Kernels for NP-Hard Problems on Planar Graphs , 2007, ICALP.

[60]  Roded Sharan,et al.  QPath: a method for querying pathways in a protein-protein interaction network , 2006, BMC Bioinformatics.

[61]  Jörg Flum,et al.  Bounded Fixed-Parameter Tractability and log2n Nondeterministic Bits , 2004, ICALP.

[62]  Martin Grohe,et al.  Algorithmic Meta Theorems , 2008, WG.

[63]  Hans L. Bodlaender,et al.  A Cubic Kernel for Feedback Vertex Set , 2007, STACS.

[64]  Dániel Marx,et al.  Closest Substring Problems with Small Distances , 2008, SIAM J. Comput..

[65]  Michael R. Fellows,et al.  Cutting Up is Hard to Do: the Parameterized Complexity of k-Cut and Related Problems , 2003, CATS.

[66]  Michael R. Fellows,et al.  Parameterized complexity: A framework for systematically confronting computational intractability , 1997, Contemporary Trends in Discrete Mathematics.

[67]  Paul D. Seymour,et al.  Graph minors. X. Obstructions to tree-decomposition , 1991, J. Comb. Theory, Ser. B.

[68]  Dimitrios M. Thilikos,et al.  Parameterized Counting Algorithms for General Graph Covering Problems , 2005, WADS.

[69]  Mam Riess Jones Color Coding , 1962, Human factors.

[70]  Yijia Chen,et al.  On Parameterized Approximability , 2006, IWPEC.

[71]  Michael R. Fellows,et al.  On the Complexity of Some Colorful Problems Parameterized by Treewidth , 2007, COCOA.

[72]  Isolde Adler,et al.  Open Problems related to computing obstruction sets , 2008 .

[73]  Jianer Chen,et al.  On Parameterized Intractability: Hardness and Completeness , 2008, Comput. J..

[74]  Russell Impagliazzo,et al.  Complexity of k-SAT , 1999, Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317).

[75]  Paul D. Seymour,et al.  Approximating clique-width and branch-width , 2006, J. Comb. Theory, Ser. B.

[76]  Craig A. Tovey,et al.  Automatic generation of linear-time algorithms from predicate calculus descriptions of problems on recursively constructed graph families , 1992, Algorithmica.

[77]  Dániel Marx,et al.  Fixed-parameter tractability of multicut parameterized by the size of the cutset , 2010, STOC '11.

[78]  Michael R. Fellows,et al.  An analogue of the Myhill-Nerode theorem and its use in computing finite-basis characterizations , 1989, 30th Annual Symposium on Foundations of Computer Science.

[79]  Stefan Szeider,et al.  A Probabilistic Approach to Problems Parameterized above or below Tight Bounds , 2009, IWPEC.

[80]  Petr Hlinený Branch-width, parse trees, and monadic second-order logic for matroids , 2006, J. Comb. Theory, Ser. B.

[81]  Rolf Niedermeier,et al.  Improved Tree Decomposition Based Algorithms for Domination-like Problems , 2002, LATIN.

[82]  Erik D. Demaine,et al.  The Bidimensionality Theory and Its Algorithmic Applications , 2008, Comput. J..

[83]  Stephan Kreutzer,et al.  Locally Excluding a Minor , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).

[84]  Aravind Srinivasan,et al.  Splitters and near-optimal derandomization , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[85]  Paul D. Seymour,et al.  Graph Minors. XXII. Irrelevant vertices in linkage problems , 2012, J. Comb. Theory, Ser. B.

[86]  Michael R. Fellows,et al.  Parameterized learning complexity , 1993, COLT '93.

[87]  Noga Alon,et al.  Kernels for the Dominating Set Problem on Graphs with an Excluded Minor , 2008, Electron. Colloquium Comput. Complex..

[88]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[89]  Michael R. Fellows,et al.  On the complexity of fixed parameter problems , 1989, 30th Annual Symposium on Foundations of Computer Science.

[90]  Maria J. Serna,et al.  Cutwidth II: Algorithms for partial w-trees of bounded degree , 2005, J. Algorithms.

[91]  Yijia Chen,et al.  On Miniaturized Problems in Parameterized Complexity Theory , 2004, IWPEC.

[92]  Ken-ichi Kawarabayashi,et al.  The Disjoint Paths Problem: Algorithm and Structure , 2011, WALCOM.

[93]  Michael R. Fellows,et al.  Forbidden minors to graphs with small feedback sets , 2001, Discret. Math..

[94]  Ge Xia,et al.  Parametric Duality and Kernelization: Lower Bounds and Upper Bounds on Kernel Size , 2005, SIAM J. Comput..

[95]  Henning Fernau,et al.  Kernel(s) for problems with no kernel: On out-trees with many leaves , 2008, TALG.

[96]  Michael R. Fellows,et al.  Nonconstructive tools for proving polynomial-time decidability , 1988, JACM.

[97]  Paul Lemke The Maximum Leaf Spanning Tree Problem for Cubic Graphs is NP-Complete , 1988 .

[98]  Uwe Schöning Graph Isomorphism is in the Low Hierarchy , 1988, J. Comput. Syst. Sci..

[99]  Petr A. Golovach,et al.  Clique-width: on the price of generality , 2009, SODA.

[100]  Robin Thomas,et al.  Call routing and the ratcatcher , 1994, Comb..

[101]  Frederic Dorn,et al.  Dynamic Programming and Fast Matrix Multiplication , 2006, ESA.

[102]  Ton Kloks,et al.  New Algorithms for k-Face Cover, k-Feedback Vertex Set, and k -Disjoint Cycles on Plane and Planar Graphs , 2002, WG.

[103]  Detlef Seese,et al.  Easy Problems for Tree-Decomposable Graphs , 1991, J. Algorithms.

[104]  Milan Ruzic,et al.  Uniform deterministic dictionaries , 2008, TALG.

[106]  Lance Fortnow,et al.  Infeasibility of instance compression and succinct PCPs for NP , 2007, J. Comput. Syst. Sci..

[107]  Stefan Kratsch,et al.  Cross-Composition: A New Technique for Kernelization Lower Bounds , 2011, STACS.

[108]  Michal Pilipczuk,et al.  Kernelization Hardness of Connectivity Problems in d-Degenerate Graphs , 2010, WG.

[109]  Paul Seymour,et al.  The metamathematics of the graph minor theorem , 1985 .

[110]  R. Downey,et al.  Parameterized Computational Feasibility , 1995 .

[111]  Petr A. Golovach,et al.  Algorithmic lower bounds for problems parameterized by clique-width , 2010, SODA '10.

[112]  Jianer Chen,et al.  Improved algorithms for path, matching, and packing problems , 2007, SODA '07.

[113]  Michael R. Fellows,et al.  Finding k Disjoint Triangles in an Arbitrary Graph , 2004, WG.

[114]  Michael Alekhnovich,et al.  Resolution Is Not Automatizable Unless W[P] Is Tractable , 2008, SIAM J. Comput..

[115]  Noga Alon,et al.  Fast Fast , 2009, ICALP.

[116]  Irit Dinur,et al.  The importance of being biased , 2002, STOC '02.

[117]  R. Battiti,et al.  Covering Trains by Stations or the Power of Data Reduction , 1998 .

[118]  Marco Cesati Perfect Code is W[1]-complete , 2000, Inf. Process. Lett..

[119]  Erik D. Demaine,et al.  09511 Abstracts Collection - Parameterized complexity and approximation algorithms , 2009, Parameterized complexity and approximation algorithms.

[120]  Stefan Szeider,et al.  Parameterized and Exact Computation , 2013, Lecture Notes in Computer Science.

[121]  Jörg Flum,et al.  Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series) , 2006 .

[122]  Weijia Jia,et al.  An efficient parameterized algorithm for m-set packing , 2004, J. Algorithms.

[123]  Henning Fernau,et al.  A Geometric Approach to Parameterized Algorithms for Domination Problems on Planar Graphs , 2004, MFCS.

[124]  Michal Pilipczuk,et al.  Solving Connectivity Problems Parameterized by Treewidth in Single Exponential Time , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[125]  Daniel Král,et al.  Algorithms for Classes of Graphs with Bounded Expansion , 2009, WG.

[126]  P. Seymour,et al.  Surveys in combinatorics 1985: Graph minors – a survey , 1985 .

[127]  Nicolas Bousquet,et al.  Multicut is FPT , 2010, STOC '11.

[128]  Yijia Chen,et al.  Lower Bounds for Kernelizations and Other Preprocessing Procedures , 2009, CiE.

[129]  Christian Sloper,et al.  Looking at the stars , 2004, Theor. Comput. Sci..

[130]  Dániel Marx,et al.  Known algorithms on graphs of bounded treewidth are probably optimal , 2010, SODA '11.

[131]  Petr A. Golovach,et al.  Induced Packing of Odd Cycles in a Planar Graph , 2009, ISAAC.

[132]  Roded Sharan,et al.  Efficient Algorithms for Detecting Signaling Pathways in Protein Interaction Networks , 2006, J. Comput. Biol..

[133]  Stefan Kratsch,et al.  Preprocessing for Treewidth: A Combinatorial Analysis through Kernelization , 2011, SIAM J. Discret. Math..

[134]  Rolf Niedermeier,et al.  Automated Generation of Search Tree Algorithms for Hard Graph Modification Problems , 2004, Algorithmica.

[135]  Moritz Müller Valiant-Vazirani Lemmata for Various Logics , 2008, Electron. Colloquium Comput. Complex..

[136]  Catherine McCartin,et al.  Some New Directions and Questions in Parameterized Complexity , 2004, Developments in Language Theory.

[137]  Michael R. Fellows,et al.  Fundamentals of Parameterized Complexity , 2013 .

[138]  Dimitrios M. Thilikos,et al.  Constructive Linear Time Algorithms for Branchwidth , 1997, ICALP.

[139]  Stéphan Thomassé A quadratic kernel for feedback vertex set , 2009, SODA.

[140]  Stefan Kratsch,et al.  Preprocessing for Treewidth: A Combinatorial Analysis through Kernelization , 2013, SIAM J. Discret. Math..

[141]  Neil Robertson,et al.  Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.

[142]  Joachim Kneis,et al.  A Practical Approach to Courcelle's Theorem , 2009, MEMICS.

[143]  Petr A. Golovach,et al.  Paths of bounded length and their cuts: Parameterized complexity and algorithms , 2009, Discret. Optim..

[144]  Dimitrios M. Thilikos,et al.  Computing Small Search Numbers in Linear Time , 2004, IWPEC.

[145]  Jaroslav Nesetril,et al.  Characterisations and examples of graph classes with bounded expansion , 2009, Eur. J. Comb..

[146]  Michael R. Fellows,et al.  Parameterized Complexity: The Main Ideas and Connections to Practical Computing , 2000, Experimental Algorithmics.

[147]  Richard M. Karp,et al.  On the Computational Complexity of Combinatorial Problems , 1975, Networks.

[148]  Falk Huner Algorithm Engineering for Optimal Graph Bipartization , 2009 .

[149]  Michael J. Dinneen,et al.  Properties of vertex cover obstructions , 2007, Discret. Math..

[150]  Barry O'Sullivan,et al.  A fixed-parameter algorithm for the directed feedback vertex set problem , 2008, STOC.

[151]  Fabrizio Grandoni,et al.  Measure and conquer: a simple O(20.288n) independent set algorithm , 2006, SODA '06.

[152]  Michael R. Fellows,et al.  The Computer Journal Special Issue on Parameterized Complexity: Foreword by the Guest Editors , 2008, Comput. J..

[153]  Gerhard J. Woeginger,et al.  Automata, Languages and Programming , 2003, Lecture Notes in Computer Science.

[154]  Bruno Courcelle,et al.  The monadic second-order logic of graphs III: tree-decompositions, minor and complexity issues , 1992, RAIRO Theor. Informatics Appl..

[155]  Stephan Kreutzer,et al.  Domination Problems in Nowhere-Dense Classes , 2009, FSTTCS.

[156]  Dimitrios M. Thilikos,et al.  Catalan structures and dynamic programming in H-minor-free graphs , 2008, SODA '08.

[157]  Erik D. Demaine,et al.  The Bidimensional Theory of Bounded-Genus Graphs , 2004, SIAM J. Discret. Math..

[158]  Bruno Courcelle,et al.  Linear Time Solvable Optimization Problems on Graphs of Bounded Clique-Width , 2000, Theory of Computing Systems.

[159]  Robin Thomas,et al.  Deciding First-Order Properties for Sparse Graphs , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[160]  Michael R. Fellows,et al.  Fixed-parameter tractability and completeness III: some structural aspects of the W hierarchy , 1993 .

[161]  Michael A. Langston,et al.  Innovative Computational Methods for Transcriptomic Data Analysis: A Case Study in the Use of FPT for Practical Algorithm Design and Implementation , 2008, Comput. J..

[162]  Dániel Marx,et al.  Slightly superexponential parameterized problems , 2011, SODA '11.

[163]  Jeanette P. Schmidt,et al.  The Spatial Complexity of Oblivious k-Probe Hash Functions , 2018, SIAM J. Comput..

[164]  Thomas Zichner,et al.  Algorithm Engineering for Color-Coding with Applications to Signaling Pathway Detection , 2008, Algorithmica.

[165]  Moritz Müller Randomized Approximations of Parameterized Counting Problems , 2006, IWPEC.

[166]  Weijia Jia,et al.  Vertex Cover: Further Observations and Further Improvements , 1999, J. Algorithms.

[167]  Michael R. Fellows,et al.  An O(2O(k)n3) FPT Algorithm for the Undirected Feedback Vertex Set Problem , 2005, Theory of Computing Systems.

[168]  J. Andrés Montoya The parameterized complexity of probability amplification , 2008, Inf. Process. Lett..

[169]  Dieter van Melkebeek,et al.  Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses , 2010, STOC '10.

[170]  R. Richardson The International Congress of Mathematicians , 1932, Science.

[171]  Michael R. Fellows,et al.  Fixed Parameter Tractability and Completeness , 1992, Complexity Theory: Current Research.

[172]  Liming Cai,et al.  The Complexity of Polynomial-Time Approximation , 2007, Theory of Computing Systems.

[173]  Weijia Jia,et al.  Vertex Cover: Further Observations and Further Improvements , 2001, J. Algorithms.

[174]  Michael R. Fellows,et al.  Beyond NP-completeness for problems of bounded width (extended abstract): hardness for the W hierarchy , 1994, STOC '94.

[175]  Moritz Müller Parameterized Derandomization , 2008, IWPEC.

[176]  Bruno Courcelle,et al.  The monadic second-order logic of graphs XVI : Canonical graph decompositions , 2005, Log. Methods Comput. Sci..

[177]  Michael R. Fellows,et al.  On search, decision, and the efficiency of polynomial-time algorithms , 1994, FOCS 1994.

[178]  Henning Fernau,et al.  Graph Separator Algorithms: A Refined Analysis , 2002, WG.

[179]  Michael R. Fellows,et al.  On problems without polynomial kernels , 2009, J. Comput. Syst. Sci..

[180]  Christopher D. Thompson-Walsh,et al.  Graphs, Rewriting and Pathway Reconstruction for Rule-Based Models , 2012, FSTTCS.

[181]  Russell Impagliazzo,et al.  Which problems have strongly exponential complexity? , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[182]  Rolf Niedermeier,et al.  Proceedings of the 3rd international conference on Parameterized and exact computation , 2008 .

[183]  Rolf Niedermeier,et al.  Fixed Parameter Algorithms for PLANAR DOMINATING SET and Related Problems , 2000, SWAT.

[184]  Dimitrios M. Thilikos,et al.  (Meta) Kernelization , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[185]  Liming Cai,et al.  On the parameterized complexity of short computation and factorization , 1997, Arch. Math. Log..

[186]  Fedor V. Fomin,et al.  Subexponential parameterized algorithm for minimum fill-in , 2011, SODA.

[187]  Erik D. Demaine,et al.  Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs , 2005, JACM.

[188]  Hisao Tamaki,et al.  Improved Bounds on the Planar Branchwidth with Respect to the Largest Grid Minor Size , 2010, Algorithmica.

[189]  Paul Wollan,et al.  A shorter proof of the graph minor algorithm: the unique linkage theorem , 2010, STOC '10.

[190]  Henning Fernau,et al.  2 Contents , 1996 .

[191]  Rolf Niedermeier,et al.  Compression-based fixed-parameter algorithms for feedback vertex set and edge bipartization , 2006, J. Comput. Syst. Sci..

[192]  Liming Cai,et al.  Subexponential Parameterized Algorithms Collapse the W-Hierarchy , 2001, ICALP.

[193]  Bruno Courcelle,et al.  The Expression of Graph Properties and Graph Transformations in Monadic Second-Order Logic , 1997, Handbook of Graph Grammars.

[194]  Maria J. Serna,et al.  Constructive Linear Time Algorithms for Small Cutwidth and Carving-Width , 2000, ISAAC.

[195]  Bruno Courcelle,et al.  Monadic Second-Order Evaluations on Tree-Decomposable Graphs , 1991, Theor. Comput. Sci..

[196]  Michael R. Fellows,et al.  On computing graph minor obstruction sets , 2000, Theor. Comput. Sci..

[197]  B. Mohar,et al.  Graph Minors , 2009 .

[198]  Petr A. Golovach,et al.  Contraction Bidimensionality: the Accurate Picture , 2009, Parameterized complexity and approximation algorithms.

[199]  Yijia Chen,et al.  An isomorphism between subexponential and parameterized complexity theory , 2006, 21st Annual IEEE Conference on Computational Complexity (CCC'06).

[200]  Michael R. Fellows,et al.  Parameterized approximation of dominating set problems , 2008, Inf. Process. Lett..

[201]  Weijia Jia,et al.  Improvement on vertex cover for low-degree graphs , 2000, Networks.

[202]  Weijia Jia,et al.  Using Nondeterminism to Design Efficient Deterministic Algorithms , 2004, Algorithmica.

[203]  Paul D. Seymour,et al.  Graph minors. XXI. Graphs with unique linkages , 2009, J. Comb. Theory, Ser. B.

[204]  Michael R. Fellows,et al.  Parameterized Circuit Complexity and the W Hierarchy , 1998, Theor. Comput. Sci..

[205]  Judy Goldsmith,et al.  Nondeterminism Within P , 1993, SIAM J. Comput..

[206]  Jaroslav Nesetril,et al.  On nowhere dense graphs , 2011, Eur. J. Comb..

[207]  Alexander Langer,et al.  Linear-Time Algorithms for Graphs of Bounded Rankwidth: A Fresh Look Using Game Theory - (Extended Abstract) , 2011, TAMC.

[208]  Jaroslav Nesetril,et al.  Grad and classes with bounded expansion II. Algorithmic aspects , 2008, Eur. J. Comb..

[209]  Dimitrios M. Thilikos,et al.  Derivation of algorithms for cutwidth and related graph layout parameters , 2002, J. Comput. Syst. Sci..

[210]  Hans L. Boblaender Polynomial algorithms for graph isomorphism and chromatic index on partial k -trees , 1990 .

[211]  Michael R. Fellows,et al.  Computational Tractability: The View From Mars , 1999, Bull. EATCS.

[212]  Hanafi S-Tp I &. .In Search , 2013 .

[213]  Dimitrios M. Thilikos,et al.  Planar Feedback Vertex Set and Face Cover: Combinatorial Bounds and Subexponential Algorithms , 2010, Algorithmica.

[214]  Erik D. Demaine,et al.  Linearity of grid minors in treewidth with applications through bidimensionality , 2008, Comb..

[215]  Ingo Wegener,et al.  Complexity Theory , 2005 .

[216]  Liming Cai,et al.  On the existence of subexponential parameterized algorithms , 2003, J. Comput. Syst. Sci..

[217]  Jianer Chen,et al.  Improved algorithms for feedback vertex set problems , 2007, J. Comput. Syst. Sci..

[218]  Bruce A. Reed,et al.  Finding odd cycle transversals , 2004, Oper. Res. Lett..

[219]  Paul D. Seymour,et al.  Graph Minors. XX. Wagner's conjecture , 2004, J. Comb. Theory B.

[220]  Martin Grohe,et al.  The complexity of first-order and monadic second-order logic revisited , 2002, Proceedings 17th Annual IEEE Symposium on Logic in Computer Science.

[221]  Dimitrios M. Thilikos,et al.  Bidimensionality and kernels , 2010, SODA '10.

[222]  Dimitrios M. Thilikos Fast Sub-exponential Algorithms and Compactness in Planar Graphs , 2011, ESA.

[223]  Michael R. Fellows,et al.  Parameterized Approximation Problems , 2006, IWPEC.

[224]  Geevarghese Philip,et al.  Solving Dominating Set in Larger Classes of Graphs: FPT Algorithms and Polynomial Kernels , 2009, ESA.

[225]  P. Dangerfield Logic , 1996, Aristotle and the Stoics.

[226]  Jörg Flum,et al.  The Parameterized Complexity of Counting Problems , 2004, SIAM J. Comput..

[227]  Erik D. Demaine,et al.  Bidimensionality: new connections between FPT algorithms and PTASs , 2005, SODA '05.

[228]  Ron Shamir,et al.  The maximum subforest problem: approximation and exact algorithms , 1998, SODA '98.

[229]  Petr Hlinený,et al.  Branch-width, parse trees, and monadic second-order logic for matroids , 2003, J. Comb. Theory, Ser. B.

[230]  Bert Gerards,et al.  Towards a structure theory for matrices and matroids , 2006 .

[231]  Michael R. Fellows,et al.  On search decision and the efficiency of polynomial-time algorithms , 1989, STOC '89.

[232]  Rodney G. Downey,et al.  Parameterized complexity for the skeptic , 2003, 18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings..

[233]  Klaus Jansen Parameterized Approximation Scheme for the Multiple Knapsack Problem , 2009, SIAM J. Comput..

[234]  Erik D. Demaine,et al.  Bidimensional Parameters and Local Treewidth , 2004, SIAM J. Discret. Math..

[235]  Ge Xia,et al.  Improved upper bounds for vertex cover , 2010, Theor. Comput. Sci..

[236]  Dániel Marx,et al.  Constant ratio fixed-parameter approximation of the edge multicut problem , 2009, Inf. Process. Lett..

[237]  Ton Kloks,et al.  Efficient and Constructive Algorithms for the Pathwidth and Treewidth of Graphs , 1993, J. Algorithms.

[238]  Fedor V. Fomin,et al.  Fast Local Search Algorithm for Weighted Feedback Arc Set in Tournaments , 2010, AAAI.

[239]  Catherine McCartin Parameterized Counting Problems , 2002, MFCS.

[240]  János Komlós,et al.  Storing a sparse table with O(1) worst case access time , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[241]  D DemaineErik,et al.  Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs , 2005 .

[242]  Rolf Niedermeier,et al.  Experimental evaluation of a tree decomposition-based algorithm for vertex cover on planar graphs , 2005, Discret. Appl. Math..

[243]  Noga Alon,et al.  Linear Time Algorithms for Finding a Dominating Set of Fixed Size in Degenerated Graphs , 2007, Algorithmica.

[244]  Peter Rossmanith,et al.  Dynamic Programming on Tree Decompositions Using Generalised Fast Subset Convolution , 2009, ESA.

[245]  Noga Alon,et al.  Solving MAX-r-SAT Above a Tight Lower Bound , 2010, SODA '10.

[246]  Janka Chlebíková,et al.  The structure of obstructions to treewidth and pathwidth , 1999, Discret. Appl. Math..

[247]  Marco Cesati,et al.  The Turing way to parameterized complexity , 2003, J. Comput. Syst. Sci..

[248]  Jaroslav Nesetril,et al.  Grad and classes with bounded expansion III. Restricted graph homomorphism dualities , 2008, Eur. J. Comb..

[249]  Andreas Björklund,et al.  Fourier meets möbius: fast subset convolution , 2006, STOC '07.

[250]  Miriam Di Ianni,et al.  Parameterized Parallel Complexity , 1998, Euro-Par.

[251]  Jaroslav Nesetril,et al.  Grad and classes with bounded expansion I. Decompositions , 2008, Eur. J. Comb..

[252]  Erik D. Demaine,et al.  Exponential Speedup of Fixed-Parameter Algorithms for Classes of Graphs Excluding Single-Crossing Graphs as Minors , 2005, Algorithmica.

[253]  Michael R. Fellows,et al.  Kernelization Algorithms for the Vertex Cover Problem: Theory and Experiments , 2004, ALENEX/ANALC.

[254]  Hans L. Bodlaender,et al.  A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.

[255]  Ljubomir Perkovic,et al.  Improved Parameterized Algorithms for Planar Dominating Set , 2002, MFCS.

[256]  Rolf Niedermeier,et al.  Invitation to data reduction and problem kernelization , 2007, SIGA.

[257]  Maria J. Serna,et al.  Efficient algorithms for counting parameterized list H-colorings , 2008, J. Comput. Syst. Sci..

[258]  John Michael Robson,et al.  Algorithms for Maximum Independent Sets , 1986, J. Algorithms.

[259]  Michael R. Fellows,et al.  The Undirected Feedback Vertex Set Problem Has a Poly(k) Kernel , 2006, IWPEC.

[260]  Eugene M. Luks,et al.  Isomorphism of graphs of bounded valence can be tested in polynomial time , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[261]  Ge Xia,et al.  Tight lower bounds for certain parameterized NP-hard problems , 2004, Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004..

[262]  Sanjeev Arora,et al.  Polynomial time approximation schemes for Euclidean TSP and other geometric problems , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[263]  Barry O'Sullivan,et al.  Almost 2-SAT is Fixed-Parameter Tractable , 2008, J. Comput. Syst. Sci..

[264]  Jianer Chen,et al.  Greedy Localization and Color-Coding: Improved Matching and Packing Algorithms , 2006, IWPEC.

[265]  Fedor V. Fomin,et al.  Bidimensionality and EPTAS , 2010, SODA '11.

[266]  Christian Komusiewicz,et al.  Fixed-Parameter Algorithms for Cluster Vertex Deletion , 2010, Theory of Computing Systems.

[267]  Dimitrios M. Thilikos,et al.  Invitation to fixed-parameter algorithms , 2007, Comput. Sci. Rev..

[268]  Christian Komusiewicz,et al.  Parameterized Algorithms and Hardness Results for Some Graph Motif Problems , 2008, CPM.

[269]  Hans L. Bodlaender,et al.  Polynomial Algorithms for Graph Isomorphism and Chromatic Index on Partial k-Trees , 1988, J. Algorithms.

[270]  Jianer Chen,et al.  Improvement on Vertex Cover for Low-Degree Graphs , 2000 .

[271]  Peter Shaw,et al.  Packing Edge Disjoint Triangles: A Parameterized View , 2004, IWPEC.

[272]  Stefan Kratsch,et al.  Parameterized Two-Player Nash Equilibrium , 2010, Algorithmica.

[273]  H. Bodlaender,et al.  Analysis of Data Reduction: Transformations give evidence for non-existence of polynomial kernels , 2008 .

[274]  János Komlós,et al.  Storing a sparse table with O(1) worst case access time , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[275]  Rolf Niedermeier,et al.  Tree decompositions of graphs: Saving memory in dynamic programming , 2006, Discret. Optim..

[276]  Ken-ichi Kawarabayashi,et al.  Algorithms for finding an induced cycle in planar graphs , 2010, Comb..

[277]  Maria J. Serna,et al.  Parameterized Complexity for Graph Layout Problems , 2005, Bull. EATCS.

[278]  Martin Grohe,et al.  Parameterized Complexity and Subexponential Time , 2004 .

[279]  Martin Grohe,et al.  Deciding First-Order Properties of Locally Tree-Decomposalbe Graphs , 1999, ICALP.

[280]  Leslie E. Trotter,et al.  Vertex packings: Structural properties and algorithms , 1975, Math. Program..

[281]  Nicolas Nisse,et al.  A unified FPT Algorithm for Width of Partition Functions , 2013 .

[282]  Saket Saurabh,et al.  Incompressibility through Colors and IDs , 2009, ICALP.

[283]  Henning Fernau,et al.  NONBLOCKER: Parameterized Algorithmics for minimum dominating set , 2006, SOFSEM.

[284]  Alexander Langer,et al.  Linear-Time Algorithms for Graphs of Bounded Rankwidth: A Fresh Look Using Game Theory , 2011, ArXiv.

[285]  Siamak Tazari,et al.  Faster Approximation Schemes and Parameterized Algorithms on H-Minor-Free and Odd-Minor-Free Graphs , 2010, MFCS.

[286]  Rolf Niedermeier,et al.  On Efficient Fixed Parameter Algorithms for WEIGHTED VERTEX COVER , 2000, ISAAC.

[287]  Ge Xia,et al.  Genus Characterizes the Complexity of Graph Problems: Some Tight Results , 2003, ICALP.

[288]  Michael R. Fellows,et al.  New Directions and New Challenges in Algorithm Design and Complexity, Parameterized , 2003, WADS.

[289]  Michael R. Fellows,et al.  Parameterized Complexity: The Main Ideas and Some Research Frontiers , 2009, ISAAC.

[290]  Iris van Rooij,et al.  Parameterized Complexity in Cognitive Modeling: Foundations, Applications and Opportunities , 2008, Comput. J..

[291]  Robin Thomas,et al.  Quickly Excluding a Planar Graph , 1994, J. Comb. Theory, Ser. B.

[292]  Faisal N. Abu-Khzam,et al.  A Quadratic Kernel for 3-Set Packing , 2009, TAMC.

[293]  Ulrike Stege,et al.  Solving large FPT problems on coarse-grained parallel machines , 2003, J. Comput. Syst. Sci..

[294]  Mihalis Yannakakis,et al.  How Good is the Chord Algorithm? , 2010, SODA.

[295]  Rolf Niedermeier,et al.  Iterative Compression for Exactly Solving NP-Hard Minimization Problems , 2009, Algorithmics of Large and Complex Networks.

[296]  Henning Fernau,et al.  Kernel(s) for Problems with No Kernel: On Out-Trees with Many Leaves , 2009, STACS.

[297]  Falk Hüffner,et al.  Algorithm Engineering for Optimal Graph Bipartization , 2005, J. Graph Algorithms Appl..