Landslides: Seeing the ground

Landslide engineering requires the consideration of a number of complex processes ranging from geological and hydrogeological characterization to geomechanical characterization, analyses and risk manage- ment. This paper concentrates on recent advances that improve site characterization applied to landslide problems. It presents the view that one of the most exciting developments is the growing potential for application of Geo- graphical Information Systems (GIS) and that making GIS goetechnically smart is a transformative development. Examples are given of integrating remote sensing data in GIS to improve visualization, mapping and movement characterization. Application of analysis of rockfall within GIS and complex slope stability evaluation with the aid of GIS are presented to illustrate recent developments and provide direction for future enhancements.

[1]  Brian Norton,et al.  Rock slope stability analysis utilizing ground-based LIDAR and digital image processing , 2006 .

[2]  Martin G. Culshaw,et al.  From concept towards reality: developing the attributed 3D geological model of the shallow subsurface , 2005, Quarterly Journal of Engineering Geology and Hydrogeology.

[3]  R. Metzger,et al.  New insight techniques to analyze rock-slope relief using DEM and 3D-imaging cloud points: COLTOP-3D software , 2007 .

[4]  V. Kastelic,et al.  Application of airborne LiDAR to mapping seismogenic faults in forested mountainous terrain, southeastern Alps, Slovenia , 2006 .

[5]  Claudio Margottini,et al.  Large scale debris-flow hazard assessment: a geotechnical approach and GIS modelling , 2003 .

[6]  C. Martín,et al.  Dynamic characteristics analysis of shallow landslides in response to rainfall event using GIS , 2005 .

[7]  William H. Schulz,et al.  Landslide susceptibility revealed by LIDAR imagery and historical records, Seattle, Washington , 2007 .

[8]  P. Reichenbach,et al.  Identification and mapping of recent rainfall-induced landslides using elevation data collected by airborne Lidar , 2007 .

[9]  M. Parise,et al.  Observation of surface features on an active landslide, and implications for understanding its history of movement , 2003 .

[10]  D. Petley,et al.  Terrestrial laser scanning for monitoring the process of hard rock coastal cliff erosion , 2005, Quarterly Journal of Engineering Geology and Hydrogeology.

[11]  J. David Frost,et al.  Using geographic information system and knowledge base system technology for real-time planning of site characterization activities , 1999 .

[12]  S. Moretti,et al.  Permanent Scatterers for landslide investigations: outcomes from the ESA-SLAM project , 2006 .

[13]  Neil Dixon,et al.  Historical aerial photographs for landslide assessment: two case histories , 2007, Quarterly Journal of Engineering Geology and Hydrogeology.

[14]  E. W. Bjerrum,et al.  Progressive failure in slopes of overconsolidated plastic clay shales , 1967 .

[15]  J. D. Frost,et al.  INTERACTIVE ANALYSIS OF SPATIAL SUBSURFACE DATA USING GIS-BASED TOOL , 2000 .

[16]  A. C. Seijmonsbergen,et al.  Comparison of three Gis-based models for predicting rockfall runout , 2003 .

[17]  C. J. Westen,et al.  Analyzing the evolution of the Tessina landslide using aerial photographs and digital elevation models , 2003 .

[18]  Janusz Wasowski,et al.  Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry , 2006 .

[19]  Robert L. Parsons,et al.  Evaluating Site Investigation Quality using GIS and Geostatistics , 2002 .

[20]  Ellen Wohl,et al.  Geological hazards, vulnerability, and risk assessment using GIS: model for Glenwood Springs, Colorado , 1994 .

[21]  M. S. Rosenbaum,et al.  Spatial management of geotechnical data for site selection , 1998 .

[22]  J. Chacón,et al.  Engineering geology maps: landslides and geographical information systems , 2006 .

[23]  C. Derek Martin,et al.  RockFall analyst: A GIS extension for three-dimensional and spatially distributed rockfall hazard modeling , 2007, Comput. Geosci..

[24]  David M. Cruden,et al.  LANDSLIDE TYPES AND PROCESSES , 1958 .

[25]  K. Clint Slatton,et al.  Geodetic laser scanning , 2007 .

[26]  C. F. Lee,et al.  A spatiotemporal probabilistic modelling of storm‐induced shallow landsliding using aerial photographs and logistic regression , 2003 .

[27]  David J. Wachal,et al.  Mapping landslide susceptibility in Travis County, Texas, USA , 2000 .

[28]  A. Brimicombe GIS, environmental modelling and engineering , 2003 .

[29]  Comparison of Terrestrial-based, High Resolution, LiDAR And Digital Photogrammetry Surveys of a Rock Slope , 2007 .

[30]  W. Zhihua REMOTE SENSING FOR LANDSLIDES , 2009 .

[31]  Norbert R. Morgenstern,et al.  Performance in Geotechnical Practice , 2000 .

[32]  S. Evans,et al.  Geologic Framework of Large Historic Landslides in Thompson River Valley, British Columbia , 2003 .

[33]  Hengxing Lan,et al.  A Digital Approach For Integrating Geotechnical Data And Stability Analyses , 2007 .

[34]  A. K. Turner,et al.  Mapping landslides : recent developments in the use of digital spatial information : keynote , 2007 .

[35]  Jim H. Chandler,et al.  Steady state behaviour of the black ven mudslide: The application of archival analytical photogrammetry to studies of landform change , 1995 .

[36]  Alberto Refice,et al.  Probabilistic modeling of uncertainties in earthquake-induced landslide hazard assessment , 2002 .

[37]  T. Pfeiffer,et al.  Computer Simulation of Rockfalls , 1989 .

[38]  C. Martin,et al.  Complex Earth Slides in the Thompson River Valley, Ashcroft, British Columbia , 2007 .

[39]  D. Harding,et al.  SOME ALGORITHMS FOR VIRTUAL DEFORESTATION (VDF) OF LIDAR TOPOGRAPHIC SURVEY DATA , 2001 .

[40]  S. Martino,et al.  From the geological to the numerical model in the analysis of gravity-induced slope deformations: An example from the Central Apennines (Italy) , 2005 .

[41]  Nick Koor An integrated approach to the assessment of slope stability in urban areas in Hong Kong using thematic maps , 1998 .

[42]  R. Soeters,et al.  Slope instability recognition, analysis, and zonation , 1996 .

[43]  Giovanni B. Crosta,et al.  STONE: a computer program for the three-dimensional simulation of rock-falls , 2002 .

[44]  Kok-Kwang Phoon,et al.  Development of a Web-GIS Based Geotechnical Information System , 2005 .

[45]  J. Krahn The 2001 R.M. Hardy Lecture: The limits of limit equilibrium analyses , 2003 .

[46]  J. David Frost,et al.  Spatial Liquefaction Analysis System , 1998 .

[47]  J. Ryder Terrain inventory and quaternary geology Ashcroft, British Columbia , 1976 .

[48]  F. Agliardi,et al.  High resolution three-dimensional numerical modelling of rockfalls , 2003 .

[49]  Alan Rock,et al.  Colorado Rockfall Simulation Program Version 5.0 , 2009 .

[50]  Yang Hong,et al.  Satellite remote sensing for global landslide monitoring , 2007 .

[51]  Fabio Rocca,et al.  Permanent scatterers in SAR interferometry , 1999, Remote Sensing.

[52]  Francesco Zucca,et al.  Use of permanent scatterers technique for large scale mass movement investigation , 2007 .

[53]  William H. Schulz,et al.  Landslides mapped using LIDAR imagery, Seattle, Washington , 2004 .

[54]  A. Günther,et al.  Automated sliding susceptibility mapping of rock slopes , 2004 .

[55]  Fabio Rocca,et al.  Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry , 2000, IEEE Trans. Geosci. Remote. Sens..

[56]  D. Varnes,et al.  Landslide types and processes , 2004 .

[57]  Michel Jaboyedoff,et al.  Design of a Geodetic Database and Associated Tools for Monitoring Rock-slope Movements: the Example of the Top of Randa Rockfall Scar Part of Special Issue " Geo-databases for Natural Hazards and Risk Assessment " , 2022 .