The origin of mass

The origin of mass is one of the deepest mysteries in science. Neutrons and protons, which account for almost all visible mass in the Universe, emerged from a primordial plasma through a cataclysmic phase transition microseconds after the Big Bang. However, most mass in the Universe is invisible. The existence of dark matter, which interacts with our world so weakly that it is essentially undetectable, has been established from its galactic-scale gravitational effects. Here we describe results from the first truly physical calculations of the cosmic phase transition and a groundbreaking first-principles investigation into composite dark matter, studies impossible with previous state-of-the-art methods and resources. By inventing a powerful new algorithm, “DSDR,” and implementing it effectively for contemporary supercomputers, we attain excellent strong scaling, perfect weak scaling to the LLNL BlueGene/Q two million cores, sustained speed of 7.2 petaflops, and time-to-solution speedup of more than 200 over the previous state-of-the-art.

[1]  Chulwoo Jung,et al.  The chiral transition and $U(1)_A$ symmetry restoration from lattice QCD using Domain Wall Fermions , 2012, 1205.3535.

[2]  P. Cai,et al.  Reliable Perturbative Results for Strong Interactions ? , 2011 .

[3]  Zoltán Fodor,et al.  The QCD equation of state with dynamical quarks , 2010, 1007.2580.

[4]  Pavlos M. Vranas Chiral symmetry restoration in the Schwinger model with domain wall fermions , 1998 .

[5]  V. Rubin,et al.  Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions , 1970 .

[6]  Creutz,et al.  Surface states and chiral symmetry on the lattice. , 1994, Physical review. D, Particles and fields.

[7]  Ulli Wolff,et al.  Non-perturbative O(a) improvement of lattice QCD , 1996 .

[8]  L. A. Moustakas,et al.  Spectroscopic Gravitational Lensing and Limits on the Dark Matter Substructure , 2003 .

[9]  Kenneth G. Wilson,et al.  A Remnant of Chiral Symmetry on the Lattice , 1982 .

[10]  G. Hooft Confinement of quarks , 2003 .

[11]  E. al.,et al.  Formation of dense partonic matter in relativistic nucleus–nucleus collisions at RHIC: Experimental evaluation by the PHENIX Collaboration , 2004, nucl-ex/0410003.

[12]  C. Gattringer,et al.  Quantum Chromodynamics on the Lattice: An Introductory Presentation , 2009 .

[13]  Gottlieb,et al.  Hybrid-molecular-dynamics algorithms for the numerical simulation of quantum chromodynamics. , 1987, Physical review. D, Particles and fields.

[14]  Balint Joo,et al.  Localisation and chiral symmetry in 2+1 flavour domain wall QCD , 2005 .

[15]  J. G. Contreras,et al.  Charged-particle multiplicity density at midrapidity in central Pb-Pb collisions at sqrt[S(NN)] = 2.76 TeV. , 2010, Physical review letters.

[16]  C. Rebbi,et al.  Lattice calculation of composite dark matter form factors , 2013, 1301.1693.

[17]  S einberg,et al.  Implications of dynamical symmetry breaking: An addendum , 2011 .

[18]  Christian Boitet,et al.  About these proceedings , 1992, COLING.

[19]  Olga Botner,et al.  Proceedings of the International Europhysics Conference on High-Energy Physics, Uppsala, Sweden, June 25-July 1, 1987 , 1987 .

[20]  Pavlos Vranas,et al.  Moebius Algorithm for Domain Wall and GapDW Fermions , 2009, 0906.2813.

[21]  D. B. Kaplan A Method for simulating chiral fermions on the lattice , 1992 .

[22]  The Nobel Foundation , 1996, Current Biology.

[23]  Pavlos M. Vranas Gap domain wall fermions , 2006 .

[24]  H. Nielsen,et al.  A no-go theorem for regularizing chiral fermions , 1981 .

[25]  Leonard Susskind,et al.  Dynamics of Spontaneous Symmetry Breaking in the Weinberg-Salam Theory , 1979 .

[26]  Chulwoo Jung,et al.  Localization and chiral symmetry in three flavor domain wall QCD , 2007, 0705.2340.

[27]  J. Kogut,et al.  Hamiltonian Formulation of Wilson's Lattice Gauge Theories , 1975 .

[28]  S. Laplace,et al.  CP violation and the CKM matrix: assessing the impact of the asymmetric B factories , 2004, hep-ph/0406184.

[29]  E Aprile,et al.  Dark matter results from 225 live days of XENON100 data. , 2012, Physical review letters.

[30]  Michael Gschwind,et al.  The IBM Blue Gene/Q Compute Chip , 2012, IEEE Micro.

[31]  Department of Physics,et al.  Controlling Residual Chiral Symmetry Breaking in Domain Wall Fermion Simulations , 2009, 0902.2587.

[32]  A. Borriello,et al.  The dark matter distribution in disc galaxies , 2000 .

[33]  P. Vranas Domain-Wall Fermions in Vector Theories , 2000 .

[34]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[35]  F. Wilczek,et al.  Ultraviolet Behavior of Non-Abelian Gauge Theories , 1973 .

[36]  Makoto Minowa,et al.  Experimental Investigation of the Energy Dependence of the Strong Coupling Strength , 1988 .

[37]  Henk Hoekstra,et al.  Current status of weak gravitational lensing , 2002 .

[38]  Kenneth G. Wilson,et al.  Quantum Chromodynamics on a Lattice , 1977 .