Computational approaches to metabolic engineering utilizing systems biology and synthetic biology

Metabolic engineering modifies cellular function to address various biochemical applications. Underlying metabolic engineering efforts are a host of tools and knowledge that are integrated to enable successful outcomes. Concurrent development of computational and experimental tools has enabled different approaches to metabolic engineering. One approach is to leverage knowledge and computational tools to prospectively predict designs to achieve the desired outcome. An alternative approach is to utilize combinatorial experimental tools to empirically explore the range of cellular function and to screen for desired traits. This mini-review focuses on computational systems biology and synthetic biology tools that can be used in combination for prospective in silico strain design.

[1]  Jennifer L Reed,et al.  Constraint-based strain design using continuous modifications (CosMos) of flux bounds finds new strategies for metabolic engineering. , 2013, Biotechnology journal.

[2]  Judy Qiu,et al.  Total Synthesis of a Functional Designer Eukaryotic Chromosome , 2014, Science.

[3]  G. Church,et al.  Genome-Scale Metabolic Model of Helicobacter pylori 26695 , 2002, Journal of bacteriology.

[4]  Herbert M Sauro,et al.  BioBrick™ assembly using the In-Fusion PCR Cloning Kit. , 2013, Methods in molecular biology.

[5]  Ronan M. T. Fleming,et al.  Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0 , 2007, Nature Protocols.

[6]  A. Burgard,et al.  Optknock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization , 2003, Biotechnology and bioengineering.

[7]  R. Overbeek,et al.  Automated genome annotation and metabolic model reconstruction in the SEED and Model SEED. , 2013, Methods in molecular biology.

[8]  Vivek K. Mutalik,et al.  Predicting strength and function for promoters of the Escherichia coli alternative sigma factor, σE , 2010, Proceedings of the National Academy of Sciences.

[9]  B. Palsson,et al.  Genome-scale models of microbial cells: evaluating the consequences of constraints , 2004, Nature Reviews Microbiology.

[10]  Sang Yup Lee Systems Metabolic Engineering , 2008, RECOMB.

[11]  Costas D. Maranas,et al.  OptCom: A Multi-Level Optimization Framework for the Metabolic Modeling and Analysis of Microbial Communities , 2012, PLoS Comput. Biol..

[12]  Jason A. Papin,et al.  The JAK-STAT signaling network in the human B-cell: an extreme signaling pathway analysis. , 2004, Biophysical journal.

[13]  Christopher A. Voigt,et al.  Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca , 2012, Proceedings of the National Academy of Sciences.

[14]  Jason A. Papin,et al.  Determination of redundancy and systems properties of the metabolic network of Helicobacter pylori using genome-scale extreme pathway analysis. , 2002, Genome research.

[15]  Radhakrishnan Mahadevan,et al.  Genome-scale metabolic modeling of a clostridial co-culture for consolidated bioprocessing. , 2010, Biotechnology journal.

[16]  Jennifer L. Reed,et al.  OptORF: Optimal metabolic and regulatory perturbations for metabolic engineering of microbial strains , 2010, BMC Systems Biology.

[17]  Stephen S. Fong,et al.  Genome-scale metabolic analysis of Clostridium thermocellum for bioethanol production , 2010, BMC Systems Biology.

[18]  F. Srienc,et al.  Elementary mode analysis: a useful metabolic pathway analysis tool for characterizing cellular metabolism , 2009, Applied Microbiology and Biotechnology.

[19]  Miguel Rocha,et al.  OptFlux: an open-source software platform for in silico metabolic engineering , 2010, BMC Systems Biology.

[20]  B. Palsson,et al.  Assessment of the metabolic capabilities of Haemophilus influenzae Rd through a genome-scale pathway analysis. , 2000, Journal of theoretical biology.

[21]  Ali R. Zomorrodi,et al.  d-OptCom: Dynamic multi-level and multi-objective metabolic modeling of microbial communities. , 2014, ACS synthetic biology.

[22]  Ronan M. T. Fleming,et al.  Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0 , 2007, Nature Protocols.

[23]  Costas D. Maranas,et al.  OptForce: An Optimization Procedure for Identifying All Genetic Manipulations Leading to Targeted Overproductions , 2010, PLoS Comput. Biol..

[24]  F. Doyle,et al.  Dynamic flux balance analysis of diauxic growth in Escherichia coli. , 2002, Biophysical journal.

[25]  Ryan S. Senger,et al.  Genome-scale modeling using flux ratio constraints to enable metabolic engineering of clostridial metabolism in silico , 2012, BMC Systems Biology.

[26]  Ronan M. T. Fleming,et al.  Multiscale Modeling of Metabolism and Macromolecular Synthesis in E. coli and Its Application to the Evolution of Codon Usage , 2012, PloS one.

[27]  Bernhard Ø. Palsson,et al.  Description and Interpretation of Adaptive Evolution of Escherichia coli K-12 MG1655 by Using a Genome-Scale In Silico Metabolic Model , 2003, Journal of bacteriology.

[28]  B. Palsson,et al.  An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR) , 2003, Genome Biology.

[29]  H. Salis The ribosome binding site calculator. , 2011, Methods in enzymology.

[30]  Steffen Klamt,et al.  CASOP: a computational approach for strain optimization aiming at high productivity. , 2010, Journal of biotechnology.

[31]  D. Endy,et al.  Refactoring bacteriophage T7 , 2005, Molecular systems biology.

[32]  H. Qian,et al.  Thermodynamic constraints for biochemical networks. , 2004, Journal of theoretical biology.

[33]  Christopher M Gowen,et al.  Genome-scale metabolic model integrated with RNAseq data to identify metabolic states of Clostridium thermocellum. , 2010, Biotechnology journal.

[34]  Radhakrishnan Mahadevan,et al.  Genome-based Modeling and Design of Metabolic Interactions in Microbial Communities , 2012, Computational and structural biotechnology journal.

[35]  Markus J. Herrgård,et al.  Network-based prediction of human tissue-specific metabolism , 2008, Nature Biotechnology.

[36]  Vivek K. Mutalik,et al.  Predicting the strength of UP-elements and full-length E. coli σE promoters , 2011, Nucleic acids research.

[37]  B. Palsson,et al.  In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data , 2001, Nature Biotechnology.

[38]  W. R. Cluett,et al.  Dynamic strain scanning optimization: an efficient strain design strategy for balanced yield, titer, and productivity. DySScO strategy for strain design , 2013, BMC Biotechnology.

[39]  H. Salis,et al.  Efficient search, mapping, and optimization of multi‐protein genetic systems in diverse bacteria , 2014 .

[40]  Drew Endy,et al.  Precise and reliable gene expression via standard transcription and translation initiation elements , 2013, Nature Methods.

[41]  Bernhard O. Palsson,et al.  Identification of Genome-Scale Metabolic Network Models Using Experimentally Measured Flux Profiles , 2006, PLoS Comput. Biol..

[42]  Costas D Maranas,et al.  OptStrain: a computational framework for redesign of microbial production systems. , 2004, Genome research.

[43]  B. Palsson,et al.  Regulation of gene expression in flux balance models of metabolism. , 2001, Journal of theoretical biology.

[44]  E. Papoutsakis,et al.  Genome‐scale model for Clostridium acetobutylicum: Part II. Development of specific proton flux states and numerically determined sub‐systems , 2008, Biotechnology and bioengineering.

[45]  B. Palsson,et al.  Transcriptional regulation in constraints-based metabolic models of Escherichia coli Covert , 2002 .

[46]  Christopher A. Voigt,et al.  Automated design of synthetic ribosome binding sites to control protein expression , 2016 .

[47]  J. Liao,et al.  Synthetic non-oxidative glycolysis enables complete carbon conservation , 2013, Nature.

[48]  William R Cluett,et al.  EMILiO: a fast algorithm for genome-scale strain design. , 2011, Metabolic engineering.

[49]  Drew Endy,et al.  Measuring the activity of BioBrick promoters using an in vivo reference standard , 2009, Journal of biological engineering.

[50]  Rick L. Stevens,et al.  High-throughput generation, optimization and analysis of genome-scale metabolic models , 2010, Nature Biotechnology.

[51]  T. D. Schneider,et al.  Use of the 'Perceptron' algorithm to distinguish translational initiation sites in E. coli. , 1982, Nucleic acids research.

[52]  D. G. Gibson,et al.  Enzymatic assembly of DNA molecules up to several hundred kilobases , 2009, Nature Methods.

[53]  B. Wanner,et al.  One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Stephen S Fong,et al.  Metabolic gene–deletion strains of Escherichia coli evolve to computationally predicted growth phenotypes , 2004, Nature Genetics.

[55]  B. Palsson,et al.  The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Costas D. Maranas,et al.  k-OptForce: Integrating Kinetics with Flux Balance Analysis for Strain Design , 2014, PLoS Comput. Biol..

[57]  F. Blattner,et al.  In silico design and adaptive evolution of Escherichia coli for production of lactic acid. , 2005, Biotechnology and bioengineering.

[58]  Ronan M. T. Fleming,et al.  Genome-Scale Reconstruction of Escherichia coli's Transcriptional and Translational Machinery: A Knowledge Base, Its Mathematical Formulation, and Its Functional Characterization , 2009, PLoS Comput. Biol..