High-Energy Physics

High-energy physics (HEP) applications represent a cutting-edge field for signal processing systems. HEP applications require sophisticated hardware-based systems to process the massive amounts of data that they generate. Scientists use these systems to identify and isolate the fundamental particles produced during collisions in particle accelerators. This chapter examines the fundamental characteristics of HEP applications and the technical and developmental challenges that shape the design of signal processing systems for HEP. These challenges include huge data rates, low latencies, evolving specifications, and long design times. We cover techniques for HEP system design, including scalable designs, testing and verification, dataflow-based modeling, and design partitioning. Throughout, we provide concrete examples from the design of the Level-1 Trigger System for the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC). We also discuss some of the new physics algorithms to be included in the upcoming LHCś high luminosity upgrade.

[1]  Roger F. Woods Mapping Decidable Signal Processing Graphs into FPGA Implementations , 2013, Handbook of Signal Processing Systems.

[2]  Naresh R. Shanbhag,et al.  Signal Processing for High-Speed Links , 2010, Handbook of Signal Processing Systems.

[3]  Fuat Keceli,et al.  DIF: An Interchange Format for Dataflow-Based Design Tools , 2004, SAMOS.

[4]  Wen-Jong Fang,et al.  Performance-driven multi-FPGA partitioning using functional clustering and replication , 1998, DAC.

[6]  Danny Kopec,et al.  Failures in complex systems: case studies, causes, and possible remedies , 2007, SGCS.

[7]  P. Darriulat The discovery of the W & Z, a personal recollection , 2004 .

[8]  J. Ting,et al.  A two level fastbus based trigger system for CDF , 1988 .

[9]  Joao Varela,et al.  CMS L1 Trigger Control System , 2002 .

[10]  T. LeCompte,et al.  THE CDF AND DØ UPGRADES FOR RUN II , 2000 .

[11]  G. Moorhead,et al.  The trigger system of the NOMAD experiment , 1999 .

[12]  Wesley H Smith Trigger and Data Acquisition for the Super LHC , 2004 .

[13]  H. Wiedemann Particle accelerator physics , 1993 .

[14]  João Paulo Teixeira,et al.  CMS : the TriDAS Project Technical Design Report; v.1, the Trigger Systems , 2004 .

[15]  G. Perrot,et al.  Performance of the L3 second level trigger implemented for the LEP II with the SGS Thomson C104 packet switch , 1998 .

[16]  L. Flores-Castillo,et al.  Standard Model Higgs Searches at the LHC , 2008 .

[17]  Nikil D. Dutt,et al.  Equivalent design representations and transformations for interactive scheduling , 1992, 1992 IEEE/ACM International Conference on Computer-Aided Design.

[18]  A. Navarro,et al.  Event reconstruction in the LHCb Online cluster , 2010 .

[19]  Rg Jacobsen,et al.  The Babar Trigger, Readout and Event Gathering System , 1996 .

[20]  R. Ruth An Introduction to Particle Accelerators , 2002 .

[21]  C. Foudas,et al.  The CMS Global Calorimeter Trigger Hardware Design , 2007 .

[22]  P. Chumney,et al.  CMS regional calorimeter trigger high speed ASICs , 2000 .

[23]  S. Stapnes,et al.  Physics potential and experimental challenges of the LHC luminosity upgrade , 2002, hep-ph/0204087.

[24]  Amin Farmahini Farahani,et al.  FPGA Design Analysis of the Clustering Algorithm for the CERN Large Hadron Collider , 2009, 2009 17th IEEE Symposium on Field Programmable Custom Computing Machines.

[25]  Wolfgang Höfle,et al.  Digital Signal Processing for the Multi-Bunch LHC Transverse Feedback System , 2008 .

[26]  William S. Levine Signal Processing for Control , 2013, Handbook of Signal Processing Systems.

[27]  P. Yepes,et al.  The STAR Trigger , 2003 .

[28]  Mickaël Raulet,et al.  OpenDF: a dataflow toolset for reconfigurable hardware and multicore systems , 2008, CARN.

[29]  Can extra-dimensional effects replace dark matter? , 2004, gr-qc/0409023.

[30]  Shuvra S. Bhattacharyya,et al.  The DSPCAD Integrative Command Line Environment: Introduction to DICE Version 1.1 , 2011 .

[31]  David A. Jacobs Applications of ESOP, a fast microprogrammable processor, in high energy physics experiments at CERN , 1981 .

[32]  P. Wittich,et al.  CDF level 2 trigger upgrade , 2006, IEEE Transactions on Nuclear Science.

[33]  Federico Faccio,et al.  G-link and gigabit Ethernet compliant serializer for LHC data transmission , 2000, 2000 IEEE Nuclear Science Symposium. Conference Record (Cat. No.00CH37149).

[34]  Shuvra S. Bhattacharyya,et al.  Advances in Architectures and Tools for FPGAs and their Impact on the Design of Complex Systems for Particle Physics , 2009 .

[35]  Ranga Vemuri,et al.  An Integrated Partitioning and Synthesis System for Dynamically Reconfigurable Multi-FPGA Architectures , 1998, IPPS/SPDP Workshops.

[36]  O. R. Jones,et al.  The 4.8 GHz LHC Schottky pick-up system , 2007, 2007 IEEE Particle Accelerator Conference (PAC).

[37]  Nicolas Produit,et al.  First-level charged particle trigger for the L3 detector , 1991 .

[38]  Reinhard Männer,et al.  Concept of the first level trigger for HERA-B , 1998 .

[39]  5-dimensional quantum gravity effects in exclusive double diffractive events , 2005, hep-ph/0506034.

[40]  P Busson Overview of the new CMS electromagnetic calorimeter electronics , 2002 .

[41]  John McAllister FPGA-Based DSP , 2013, Handbook of Signal Processing Systems.

[42]  M. C. Smith,et al.  PHENIX on-line systems , 2003 .

[43]  W. Willis Experience of the axial field spectrometer at the CERN ISR , 1982 .

[44]  J. Varela,et al.  Timing and Synchronization in the LHC Experiments , 2000 .

[45]  Helmuth Spieler,et al.  Review of Particle Physics, 2008-2009 , 2000 .