Kinetics of glycerol dehydration-hydrogenation reaction in the vapor phase in a fixed bed down flow tubular reactor over a bi-functional Cu-Zn/MgO catalyst

[1]  Dinesh Pandey,et al.  Continuous production of propylene glycol (1,2-propanediol) by the hydrogenolysis of glycerol over a bi-functional Cu–Ru/MgO catalyst , 2020 .

[2]  Dinesh Pandey,et al.  Production of propylene glycol (1,2-propanediol) by the hydrogenolysis of glycerol in a fixed-bed downflow tubular reactor over a highly effective Cu–Zn bifunctional catalyst: effect of an acidic/basic support , 2019, New Journal of Chemistry.

[3]  P. Biswas,et al.  Production of propylene glycol (propane-1,2-diol) in vapor phase over Cu–Ni/γ-Al2O3 catalyst in a down flow tubular reactor: effect of catalyst calcination temperature and kinetic study , 2019, Reaction Kinetics, Mechanisms and Catalysis.

[4]  Manish Kumar,et al.  Development of Kinetic Model for Hydrogenolysis of Glycerol over Cu/MgO Catalyst in a Slurry Reactor , 2018 .

[5]  Shashi Kumar,et al.  Selective hydrogenolysis of glycerol to 1,2‐propanediol over highly active copper–magnesia catalysts: reaction parameter, catalyst stability and mechanism study , 2016 .

[6]  Shishir Sinha,et al.  Selective Hydrogenolysis of Glycerol to 1,2-Propanediol over Highly Active and Stable Cu/MgO Catalyst in the Vapor Phase , 2016 .

[7]  S. Järås,et al.  Selective transformation of glycerol into 1,2-propanediol on several Pt/ZnO solids: Further insight into the role and origin of catalyst acidity , 2015 .

[8]  Xinwen Guo,et al.  Catalytic hydrogenolysis of glycerol to propanediols: a review , 2015 .

[9]  Samudrala Shanthi Priya,et al.  Metal–acid bifunctional catalysts for selective hydrogenolysis of glycerol under atmospheric pressure: A highly selective route to produce propanols , 2015 .

[10]  S. Bagheri,et al.  Catalytic conversion of biodiesel derived raw glycerol to value added products , 2015 .

[11]  R. Augustine,et al.  An Efficient, Selective Process for the Conversion of Glycerol to Propylene Glycol Using Fixed Bed Raney Copper Catalysts , 2014 .

[12]  A. Dalai,et al.  Selective hydrogenolysis of glycerol to propylene glycol by using Cu:Zn:Cr:Zr mixed metal oxides catalyst , 2014 .

[13]  L. Gu,et al.  Selective hydrogenolysis of glycerol to 1,2-propanediol over MgO-nested Raney Cu , 2014, Reaction Kinetics, Mechanisms and Catalysis.

[14]  Jizhen Zhang,et al.  One-pot synthesis Of Cu/ZnO/ZnAl2O4 catalysts and their catalytic performance in glycerol hydrogenolysis , 2013 .

[15]  A. Lemonidou,et al.  Kinetic study of liquid-phase glycerol hydrogenolysis over Cu/SiO2 catalyst , 2013 .

[16]  Yichi Zhang,et al.  Glycerol Hydrogenolysis to Propylene Glycol and Ethylene Glycol on Zirconia Supported Noble Metal Catalysts , 2013 .

[17]  C. Rode,et al.  Copper modified waste fly ash as a promising catalyst for glycerol hydrogenolysis , 2012 .

[18]  J. Yi,et al.  Preparation and characterization of nanocrystalline CuAl2O4 spinel catalysts by sol–gel method for the hydrogenolysis of glycerol , 2012 .

[19]  Muhammad Ayoub,et al.  Critical review on the current scenario and significance of crude glycerol resulting from biodiesel industry towards more sustainable renewable energy industry , 2012 .

[20]  G. Yadav,et al.  Hydrogenolysis of Glycerol to 1,2-Propanediol over Nano-Fibrous Ag-OMS-2 Catalysts , 2012 .

[21]  Z. Hou,et al.  Hydrogenolysis of glycerol on bimetallic Pd-Cu/solid-base catalysts prepared via layered double hydroxides precursors , 2011 .

[22]  A. Lemonidou,et al.  Investigating the performance and deactivation behaviour of silica-supported copper catalysts in glycerol hydrogenolysis , 2011 .

[23]  Rijie Wang,et al.  Vapor-phase Beckmann rearrangement of cyclohexanone oxime over phosphorus modified Si-MCM-41 , 2010 .

[24]  R. V. Chaudhari,et al.  Kinetic Modeling of Aqueous-Phase Glycerol Hydrogenolysis in a Batch Slurry Reactor , 2010 .

[25]  Joseph J. Bozell,et al.  Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited , 2010 .

[26]  W. Yuan,et al.  Kinetics of Hydrogenolysis of Glycerol to Propylene Glycol over Cu-ZnO-Al2O3 Catalysts , 2010 .

[27]  Hua Chen,et al.  Hydrogenolysis of glycerol to glycols over ruthenium catalysts: Effect of support and catalyst reduction temperature , 2008 .

[28]  Robert J. Davis,et al.  Hydrogenolysis of glycerol over carbon-supported Ru and Pt catalysts , 2007 .

[29]  David K. Johnson,et al.  Mechanisms of glycerol dehydration. , 2006, The journal of physical chemistry. A.

[30]  Galen J. Suppes,et al.  Low-pressure hydrogenolysis of glycerol to propylene glycol , 2005 .

[31]  Alvise Perosa,et al.  Selective Hydrogenolysis of Glycerol with Raney Nickel , 2005 .

[32]  B. Shanks,et al.  Kinetic Analysis of the Hydrogenolysis of Lower Polyhydric Alcohols: Glycerol to Glycols , 2003 .

[33]  M. Vannice,et al.  Kinetics of liquid-phase hydrogenation reactions over supported metal catalysts — a review , 2001 .

[34]  S. Tambe,et al.  Kinetics of hydrogenation of o-nitrophenol to o-aminophenol on Pd/carbon catalysts in a stirred three-phase slurry reactor , 1998 .