Structure of the low permeable naturally fractured geothermal reservoir at Soultz

The permeability of the granite geothermal reservoir of Soultz is primarily related to major fracture zones, which, in turn, are connected to dense networks of small-scale fractures. The small-scale fractures are nearly vertical and the major direction is about N0°E. This direction differs from that of the Rhine Graben, which is about N20°E to N45°E in northern Alsace. A total of 39 fracture zones, with a general strike of N160°E, have been identified in six wells between 1400 and 5000 m depth. These fracture zones are spatially concentrated in three clusters. The upper cluster at 1800–2000 m True Vertical Depth (TVD) is highly permeable. At 3000–3400 m TVD, the intermediate cluster in composed of a dense network developed in an altered matrix and forms the upper reservoir. In the lower part of the wells, the deeper cluster appears as a fractured reservoir developed within a low permeable matrix. Fracture zones represent a key element to take into account for predicting the geothermal reservoir life time submitted to various thermo-hydromechanical and chemical processes generated by hydraulic or chemical stimulations and by hydraulic circulation tests related to long-term exploitation.

[1]  A Gerard,et al.  The Soultz-sous-Forets project , 1987 .

[2]  Agust Gudmundsson,et al.  Propagation pathways and fluid transport of hydrofractures in jointed and layered rocks in geothermal fields , 2002 .

[3]  W. T. Parry,et al.  Fracturing and hydrothermal alteration in normal fault zones , 1994 .

[4]  Albert Genter,et al.  Fracture analysis and reservoir characterization of the granitic basement in the HRD Soultz project (France) , 1995 .

[5]  F. Vuataz,et al.  Geochemical Monitoring of Drilling Fluids: A Powerful Tool To Forecast and Detect Formation Waters , 1990 .

[6]  G. Klee,et al.  Hydrofrac stress data for the European HDR research project test site Soultz-Sous-Forets , 1993 .

[7]  Philippe Renard,et al.  Three-dimensional geometric modeling of a faulted domain: the Soultz Horst example (Alsace, France) , 1994 .

[8]  A. Cocherie,et al.  Datation U-Pb des deux Faciès du granite de Soultz (Fossé rhénan, France) , 2004 .

[9]  Agust Gudmundsson,et al.  Fracture networks and fluid transport in active fault zones , 2001 .

[10]  J. Royer,et al.  The hidden monzogranite of Soultz-sous-Forêts ( Rhine Graben , France ) , 2002 .

[11]  L. Dorbath,et al.  Faulting mechanisms and stress regime at the European HDR site of Soultz-sous-Forêts, France , 2006 .

[12]  Philippe Lutz,et al.  The deep EGS (Enhanced Geothermal System) project at Soultz-sous-Forêts (Alsace, France) , 2006 .

[13]  B. Valley The relation between natural fracturing and stress heterogeneities in deep-seated crystalline rocks at Soultz-sous-Forêts (France) , 2007 .

[14]  A. Genter Géothermie roches chaudes sèches : le granite de Soultz-sous-Forêts (Bas-Rhin, France) : fracturation naturelle, altérations hydrothermales et interaction eau-roche , 1989 .

[15]  Chrystel Dezayes,et al.  Microfracture pattern compared to core-scale fractures in the borehole of Soultz-sous-Forêts granite, Rhine graben, France , 2000 .

[16]  M. Munschy,et al.  Insight into the structure of the Upper Rhine Graben and its basement from a new compilation of Bouguer Gravity , 2006 .

[17]  Chrystel Dezayes,et al.  Decoupling of deformation in the Upper Rhine Graben sediments. Seismic reflection and diffraction on 3-component Vertical Seismic Profiling (Soultz-sous-Forêts area) , 2009 .

[18]  J. Pinault,et al.  Tracer testing of the geothermal heat exchanger at Soultz-sous-Forêts (France) between 2000 and 2005 , 2006 .

[19]  Bernard Sanjuan,et al.  Chemical stimulation techniques for geothermal wells: experiments on the three-well EGS system at Soultz-sous-Forêts, France , 2009 .

[20]  Chrystel Dezayes,et al.  Deep-seated geology of the granite intrusions at the Soultz EGS site based on data from 5 km-deep boreholes , 2006 .

[21]  J. Illies,et al.  The Rhine graben rift system-plate tectonics and transform faulting , 1972 .

[22]  P. A. Ziegler European Cenozoic rift system , 1992 .

[23]  S. Gentier,et al.  Role of Fracture Geometry in the Evolution of Flow Paths Under Stress , 2013 .

[24]  Benoît Valley,et al.  STRESS STATE AT SOULTZ-SOUS-FORÊTS TO 5 KM DEPTH FROM WELLBORE FAILURE AND HYDRAULIC OBSERVATIONS. , 2007 .

[25]  Chrystel Dezayes,et al.  3D model of fracture zones at Soultz-sous-Forêts based on geological data, image logs, induced microseismicity and vertical seismic profiles , 2010 .

[26]  F. Bergerat,et al.  L'evolution structurale du fosse rhenan au cours du Cenozoique ; un bilan de la deformation et des effets thermiques de l'extension , 1987 .

[27]  Reinhard Jung,et al.  The European HDR project at Soultz sous forets: Stimulation of the second deep well and first circulation experiments , 1996 .

[28]  R. Schellschmidt,et al.  CHEMICAL STIMULATION OPERATIONS FOR RESERVOIR DEVELOPMENT OF THE DEEP CRYSTALLINE HDR / EGS SYSTEM AT SOULTZ-SOUS-FORÊTS ( FRANCE ) , 2008 .

[29]  Albert Genter,et al.  Seismic response of the fractured and faulted granite of Soultz-sous-Forêts (France) to 5 km deep massive water injections , 2009 .

[30]  Albert Genter,et al.  Permeability creation and damage due to massive fluid injections into granite at 3.5 km at Soultz: 1. Borehole observations , 2005 .

[31]  James P. Evans,et al.  Fault zone architecture and permeability structure , 1996 .

[32]  C. Castaing,et al.  Comparative analysis of direct (core) and indirect (borehole imaging tools) collection of fracture data in the Hot Dry Rock Soultz reservoir (France) , 1997 .

[33]  J. Illies Recent and Paleo-Intraplate Tectonics in Stable Europe and the Rhinegraben Rift System , 1975 .

[34]  K. Evans Permeability creation and damage due to massive fluid injections into granite at 3.5 km at Soultz: 2. Critical stress and fracture strength , 2005 .

[35]  L. Micarelli Structural properties of rift-related normal faults: the case study of the Gulf of Corinth, Greece , 2003 .

[36]  Sally M. Benson,et al.  Dynamics of fluids in fractured rock , 2000 .