Global Medical Shape Analysis Using the Volumetric Laplace Spectrum

This paper proposes to use the volumetric Laplace spectrum as a global shape descriptor for medical shape analysis. The approach allows for shape comparisons using minimal shape preprocessing. In particular, no registration, mapping, or remeshing is necessary. All computations can be performed directly on the voxel representations of the shapes. The discriminatory power of the method is tested on a population of female caudate shapes (brain structure) of normal control subjects and of subjects with schizotypal personality disorder. The behavior and properties of the volumetric Laplace spectrum are discussed extensively for both the Dirichlet and Neumann boundary condition showing advantages of the Neumann spectra. Both, the computations of spectra on 3D voxel data for shape matching as well as the use of the Neumann spectrum for shape analysis are completely new.

[1]  Christopher G. Langton,et al.  Artificial Life , 2019, Philosophical Posthumanism.

[2]  Craig W. Reynolds Flocks, herds, and schools: a distributed behavioral model , 1987, SIGGRAPH.

[3]  Jonathan J. Shuster,et al.  Nonparametric One-Sided Tests in Multivariate Analysis with Medical Applications , 1977 .

[4]  M. Minsky The Society of Mind , 1986 .

[5]  Andrew Ortony,et al.  The Cognitive Structure of Emotions , 1988 .

[6]  Niklas Peinecke,et al.  Laplace-Beltrami spectra as 'Shape-DNA' of surfaces and solids , 2006, Comput. Aided Des..

[7]  James J. Levitt,et al.  Reduction of Caudate Nucleus Volumes in Neuroleptic-Naïve Female Subjects with Schizotypal Personality Disorder , 2006, Biological Psychiatry.

[8]  P. Johnson-Laird,et al.  Towards a Cognitive Theory of Emotions , 1987 .

[9]  Rosalind W. Picard Affective Computing , 1997 .

[10]  Lei Wang,et al.  Structural analysis of the basal ganglia in schizophrenia , 2007, Schizophrenia Research.

[11]  Dylan Evans,et al.  Emotion: The Science of Sentiment , 2001 .

[12]  Douglas W. Jones,et al.  Shape analysis of brain ventricles using SPHARM , 2001, Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA 2001).

[13]  Franz-Erich Wolter,et al.  Local and global geometric methods for analysis, interrogation, reconstruction, modification and design of shape , 2000, Proceedings Computer Graphics International 2000.

[14]  Niklas Peinecke,et al.  Laplace-spectra as fingerprints for shape matching , 2005, SPM '05.

[15]  W. Wundt Grundriss der Psychologie , 1896 .

[16]  F. Wilcoxon Individual Comparisons by Ranking Methods , 1945 .

[17]  Carlos Delgado-Mata,et al.  On the Use of Virtual Animals with Artificial Fear in Virtual Environments , 2007, New Generation Computing.

[18]  Deborah T. Sharpe,et al.  The Psychology of Color and Design , 1974 .

[19]  E. Ziegel Permutation, Parametric, and Bootstrap Tests of Hypotheses (3rd ed.) , 2005 .

[20]  R. Taylor The Finite Element Method, the Basis , 2000 .

[21]  Niklas Peinecke,et al.  Laplace spectra as fingerprints for image recognition , 2007, Comput. Aided Des..

[22]  Daniel Thalmann,et al.  Crowd simulation for virtual heritage , 2002 .

[23]  I. Chavel Eigenvalues in Riemannian geometry , 1984 .

[24]  J. Russell A circumplex model of affect. , 1980 .

[25]  Martin Styner,et al.  STATISTICAL SHAPE ANALYSIS OF BRAIN STRUCTURES USING SPHERICAL WAVELETS , 2007, 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[26]  C. Izard,et al.  Four systems for emotion activation: cognitive and noncognitive processes. , 1993, Psychological review.

[27]  Martin Styner,et al.  Framework for the Statistical Shape Analysis of Brain Structures using SPHARM-PDM. , 2006, The insight journal.

[28]  Raúl San José Estépar,et al.  Shape of caudate nucleus and its cognitive correlates in neuroleptic-naive schizotypal personality disorder , 2003, Biological Psychiatry.

[29]  H. McKean,et al.  Curvature and the Eigenvalues of the Laplacian , 1967 .

[30]  William T. Reeves,et al.  Particle systems—a technique for modeling a class of fuzzy objects , 1983, International Conference on Computer Graphics and Interactive Techniques.

[31]  David L. Webb,et al.  Isospectral plane domains and surfaces via Riemannian orbifolds , 1992 .

[32]  Juan David Velásquez,et al.  Modeling Emotions and Other Motivations in Synthetic Agents , 1997, AAAI/IAAI.

[33]  P. Good Permutation, Parametric, and Bootstrap Tests of Hypotheses , 2005 .

[34]  P. Ekman An argument for basic emotions , 1992 .

[35]  Martha Elizabeth Shenton,et al.  Global Medical Shape Analysis Using the Laplace-Beltrami Spectrum , 2007, MICCAI.

[36]  Carrie Heeter,et al.  Being There: The Subjective Experience of Presence , 1992, Presence: Teleoperators & Virtual Environments.

[37]  M. Friedman The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance , 1937 .

[38]  Stacy Marsella,et al.  Evaluating a General Model of Emotional Appraisal and Coping , 2004, AAAI 2004.

[39]  Richard E. Parent,et al.  Computer animation - algorithms and techniques , 2012 .

[40]  D. Louis Collins,et al.  Brain morphometry using 3D moment invariants , 2004, Medical Image Anal..

[41]  Martin Reuter,et al.  Laplace spectra for shape recognition , 2006 .

[42]  Thomas E. Nichols,et al.  Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate , 2002, NeuroImage.

[43]  Michael J. Singer,et al.  Measuring Presence in Virtual Environments: A Presence Questionnaire , 1998, Presence.