Relevance Feedback for Structural Query Expansion

Keyword-based queries are an important means to retrieve information from XML collections with unknown or complex schemas. Relevance Feedback integrates relevance information provided by a user to enhance retrieval quality. For keyword-based XML queries, feedback engines usually generate an expanded keyword query from the content of elements marked as relevant or nonrelevant. This approach that is inspired by text-based IR completely ignores the semistructured nature of XML. This paper makes the important step from pure content-based to structural feedback. It presents two independent approaches that include structural dimensions in a feedback-driven query evaluation: The first approach reranks the result list of a keyword-based search engine, using structural features derived from results with known relevance. The second approach expands a keyword query into a full-fledged content-and-structure query with weighted conditions.

[1]  Mounia Lalmas,et al.  A survey on the use of relevance feedback for information access systems , 2003, The Knowledge Engineering Review.

[2]  Gerhard Weikum,et al.  Intelligent Search on XML Data , 2003, Lecture Notes in Computer Science.

[3]  Ralf Schenkel,et al.  Structural Feedback for Keyword-Based XML Retrieval , 2006, ECIR.

[4]  Ralf Schenkel,et al.  Query Refinement by Relevance Feedback in an XML Retrieval System , 2004, ER.

[5]  Ralf Schenkel,et al.  Feedback-Driven Structural Query Expansion for Ranked Retrieval of XML Data , 2006, EDBT.

[6]  Wesley W. Chu,et al.  Configurable indexing and ranking for XML information retrieval , 2004, SIGIR '04.

[7]  M. de Rijke,et al.  Mixture Models, Overlap, and Structural Hints in XML Element Retrieval , 2004, INEX.

[8]  Gerhard Weikum,et al.  An Efficient and Versatile Query Engine for TopX Search , 2005, VLDB.

[9]  Feng Shao,et al.  XRANK: ranked keyword search over XML documents , 2003, SIGMOD '03.

[10]  Xiaodong Wu,et al.  Path-augmented keyword search for XML documents , 2004, 16th IEEE International Conference on Tools with Artificial Intelligence.

[11]  Claudio Carpineto,et al.  Merging XML Indices , 2004, INEX.

[12]  Alberto H. F. Laender,et al.  The effectiveness of automatically structured queries in digital libraries , 2004, Proceedings of the 2004 Joint ACM/IEEE Conference on Digital Libraries, 2004..

[13]  Hanglin Pan Relevance Feedback in XML Retrieval , 2004, EDBT Workshops.

[14]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .

[15]  Djoerd Hiemstra,et al.  TIJAH at INEX 2004 Modeling Phrases and Relevance Feedback , 2004, INEX.

[16]  Stephen E. Robertson,et al.  On Term Selection for Query Expansion , 1991, J. Documentation.

[17]  Carolyn J. Crouch,et al.  Flexible Retrieval Based on the Vector Space Model , 2004, INEX.

[18]  Torsten. Grust,et al.  Accelerating XPath location steps , 2002, SIGMOD '02.

[19]  Yannis Papakonstantinou,et al.  Efficient keyword search for smallest LCAs in XML databases , 2005, SIGMOD '05.

[20]  Stephen E. Robertson,et al.  Relevance weighting of search terms , 1976, J. Am. Soc. Inf. Sci..

[21]  Gabriella Kazai,et al.  The INEX Evaluation Initiative , 2003, Intelligent Search on XML Data.

[22]  Divesh Srivastava,et al.  A System for Keyword Proximity Search on XML Databases , 2003, VLDB.

[23]  Benjamin Piwowarski,et al.  An Algebra for Structured Queries in Bayesian Networks , 2004, INEX.

[24]  Thijs Westerveld,et al.  Structural features in content oriented XML retrieval , 2005, CIKM '05.

[25]  Gerhard Weikum,et al.  Semantic Similarity Search on Semistructured Data with the XXL Search Engine , 2005, Information Retrieval.

[26]  Roger Weber Using Relevance Feedback in XML Retrieval , 2003, Intelligent Search on XML Data.

[27]  Jaap Kamps,et al.  The University of Amsterdam at INEX 2006 , 2002 .

[28]  Gerard Salton,et al.  The SMART Retrieval System—Experiments in Automatic Document Processing , 1971 .

[29]  Andrew Trotman,et al.  Narrowed Extended XPath I (NEXI) , 2004, INEX.