Luminescent chemosensors based on semiconductor quantum dots.

Semiconductor quantum dots are inorganic nanoparticles with unique photophysical properties. In particular, their huge one- and two-photon absorption cross sections, tunable emission bands and excellent photobleaching resistances are stimulating the development of luminescent probes for biomedical imaging and sensing applications. Indeed, electron and energy transfer processes can be designed to switch the luminescence of semiconductor quantum dots in response to molecular recognition events. On the basis of these operating principles, the presence of target analytes can be transduced into detectable luminescence signals. In fact, luminescent chemosensors based on semiconductor quantum dots are starting to be developed to detect small molecules, monitor DNA hybridization, assess protein-ligand complementarities, test enzymatic activity and probe pH distributions. Although fundamental research is still very much needed to understand further the fundamental factors regulating the behavior of these systems and refine their performance, it is becoming apparent that sensitive probes based on semiconductor quantum dots will become invaluable analytical tools for a diversity of applications in biomedical research.

[1]  F. Raymo,et al.  Nanoparticle-induced transition from positive to negative photochromism , 2007 .

[2]  Chun-Yen Chen,et al.  Potassium ion recognition by 15-crown-5 functionalized CdSe/ZnS quantum dots in H2O. , 2006, Chemical communications.

[3]  F. Raymo,et al.  pH-sensitive ligand for luminescent quantum dots. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[4]  J. Beechem,et al.  Development of homogeneous binding assays based on fluorescence resonance energy transfer between quantum dots and Alexa Fluor fluorophores. , 2006, Analytical biochemistry.

[5]  Rebekah Drezek,et al.  Water-soluble quantum dots for biomedical applications. , 2006, Biochemical and biophysical research communications.

[6]  Moungi G Bawendi,et al.  A ratiometric CdSe/ZnS nanocrystal pH sensor. , 2006, Journal of the American Chemical Society.

[7]  Hans-Gerd Löhmannsröben,et al.  Lanthanides to quantum dots resonance energy transfer in time-resolved fluoro-immunoassays and luminescence microscopy. , 2006, Journal of the American Chemical Society.

[8]  J. Rička,et al.  Absolute measurement of molecular two-photon absorption cross-sections using a fluorescence saturation technique. , 2006, Optics express.

[9]  F. Raymo,et al.  A mechanism to signal receptor-substrate interactions with luminescent quantum dots. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Robert Godin,et al.  Free radical sensor based on CdSe quantum dots with added 4-amino-2,2,6,6-tetramethylpiperidine oxide functionality. , 2006, The journal of physical chemistry. B.

[11]  Zeev Rosenzweig,et al.  Synthesis and application of quantum dots FRET-based protease sensors. , 2006, Journal of the American Chemical Society.

[12]  Igor L. Medintz,et al.  Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations. , 2006, Angewandte Chemie.

[13]  Jin-Sil Choi,et al.  Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. , 2006, Angewandte Chemie.

[14]  Igor L. Medintz,et al.  Designer variable repeat length polypeptides as scaffolds for surface immobilization of quantum dots. , 2006, The journal of physical chemistry. B.

[15]  Diana Suffern,et al.  Photophysics of dopamine-modified quantum dots and effects on biological systems , 2006, Nature materials.

[16]  Smita Dayal,et al.  Quantum Dot-based Energy Transfer: Perspectives and Potential for Applications in Photodynamic Therapy , 2006, Photochemistry and photobiology.

[17]  Chun-Yang Zhang,et al.  Quantum-dot-based nanosensor for RRE IIB RNA-Rev peptide interaction assay. , 2006, Journal of the American Chemical Society.

[18]  F. Raymo,et al.  Luminescence Modulation with Semiconductor Quantum Dots and Photochromic Ligands , 2006 .

[19]  Shimon Weiss,et al.  Advances in fluorescence imaging with quantum dot bio-probes. , 2006, Biomaterials.

[20]  Françisco M Raymo,et al.  pH-sensitive quantum dots. , 2006, The journal of physical chemistry. B.

[21]  S. Hackney,et al.  Water-Soluble, Cyclodextrin-Modified CdSe−CdS Core−Shell Structured Quantum Dots , 2006 .

[22]  Martin Frenz,et al.  Absolute measurement of molecular two-photon absorption cross-sections using a fluorescence saturation technique , 2006, SPIE BiOS.

[23]  Igor L. Medintz,et al.  Förster resonance energy transfer investigations using quantum-dot fluorophores. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[24]  Hans-Gerd Löhmannsröben,et al.  Quantum dots as efficient energy acceptors in a time-resolved fluoroimmunoassay. , 2005, Angewandte Chemie.

[25]  I. Willner,et al.  Fluorescence resonance energy transfer in CdSe/ZnS-DNA conjugates: probing hybridization and DNA cleavage. , 2005, The journal of physical chemistry. B.

[26]  H. Yeh,et al.  Single-quantum-dot-based DNA nanosensor , 2005, Nature materials.

[27]  Qiang Ma,et al.  Fluorescence resonance energy transfer in doubly-quantum dot labeled IgG system. , 2005, Talanta.

[28]  Igor L. Medintz,et al.  A Reagentless Biosensing Assembly Based on Quantum Dot–Donor Förster Resonance Energy Transfer , 2005 .

[29]  Rebekah Drezek,et al.  Protease-activated quantum dot probes. , 2005, Biochemical and biophysical research communications.

[30]  David E Benson,et al.  A modular nanoparticle-based system for reagentless small molecule biosensing. , 2005, Journal of the American Chemical Society.

[31]  A. Pron,et al.  Size and ligand effects on the electrochemical and spectroelectrochemical responses of CdSe nanocrystals. , 2005, Physical chemistry chemical physics : PCCP.

[32]  Zhivko Zhelev,et al.  Quantum dot-conjugated hybridization probes for preliminary screening of siRNA sequences. , 2005, Journal of the American Chemical Society.

[33]  C. Larabell,et al.  Quantum dots as cellular probes. , 2005, Annual review of biomedical engineering.

[34]  J. Baumberg,et al.  Quenching of CdSe quantum dot emission, a new approach for biosensing. , 2005, Chemical communications.

[35]  Igor L. Medintz,et al.  Quantum dot bioconjugates for imaging, labelling and sensing , 2005, Nature materials.

[36]  Taekjip Ha,et al.  Single-molecule quantum-dot fluorescence resonance energy transfer. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[37]  Yadong Yin,et al.  Colloidal nanocrystal synthesis and the organic–inorganic interface , 2005, Nature.

[38]  Igor L. Medintz,et al.  A hybrid quantum dot-antibody fragment fluorescence resonance energy transfer-based TNT sensor. , 2005, Journal of the American Chemical Society.

[39]  Chad A Mirkin,et al.  Nanostructures in biodiagnostics. , 2005, Chemical reviews.

[40]  M. El-Sayed,et al.  Chemistry and properties of nanocrystals of different shapes. , 2005, Chemical reviews.

[41]  J. Lakowicz,et al.  Two-photon induced fluorescence of Cy5-DNA in buffer solution and on silver island films. , 2005, Biochemical and biophysical research communications.

[42]  Eunkeu Oh,et al.  Inhibition assay of biomolecules based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles. , 2005, Journal of the American Chemical Society.

[43]  Horst Vogel,et al.  Lipid-coated nanocrystals as multifunctionalized luminescent scaffolds for supramolecular biological assemblies. , 2005, Angewandte Chemie.

[44]  Amit Meller,et al.  Using fluorescence resonance energy transfer to measure distances along individual DNA molecules: corrections due to nonideal transfer. , 2005, The Journal of chemical physics.

[45]  F. Marshall,et al.  In vivo molecular and cellular imaging with quantum dots. , 2005, Current opinion in biotechnology.

[46]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[47]  Igor L. Medintz,et al.  Can luminescent quantum dots be efficient energy acceptors with organic dye donors? , 2005, Journal of the American Chemical Society.

[48]  D. Arndt-Jovin,et al.  Imaging takes a quantum leap. , 2004, Physiology.

[49]  Itamar Willner,et al.  Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. , 2004, Angewandte Chemie.

[50]  Tim Liedl,et al.  On the development of colloidal nanoparticles towards multifunctional structures and their possible use for biological applications. , 2004, Small.

[51]  M. Ozkan,et al.  Adaptation of inorganic quantum dots for stable molecular beacons , 2004 .

[52]  J. Jaiswal,et al.  Potentials and pitfalls of fluorescent quantum dots for biological imaging. , 2004, Trends in cell biology.

[53]  Mark Green,et al.  Semiconductor quantum dots as biological imaging agents. , 2004, Angewandte Chemie.

[54]  Thomas Nann,et al.  Application of luminescent nanocrystals as labels for biological molecules , 2004, Analytical and bioanalytical chemistry.

[55]  K. Kataoka,et al.  Novel molecular recognition via fluorescent resonance energy transfer using a biotin-PEG/polyamine stabilized CdS quantum dot. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[56]  Philippe Guyot-Sionnest,et al.  Light Emission and Amplification in Charged CdSe Quantum Dots , 2004 .

[57]  M. El-Sayed Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals. , 2004, Accounts of chemical research.

[58]  Igor L. Medintz,et al.  Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. , 2003, Journal of the American Chemical Society.

[59]  Christof M Niemeyer,et al.  Functional hybrid devices of proteins and inorganic nanoparticles. , 2003, Angewandte Chemie.

[60]  Itamar Willner,et al.  Lighting-up the dynamics of telomerization and DNA replication by CdSe-ZnS quantum dots. , 2003, Journal of the American Chemical Society.

[61]  Igor L. Medintz,et al.  Self-assembled nanoscale biosensors based on quantum dot FRET donors , 2003, Nature materials.

[62]  S. Nie,et al.  Molecular profiling of single cells and tissue specimens with quantum dots. , 2003, Trends in biotechnology.

[63]  G. Urban,et al.  Determination of quantum confinement in CdSe nanocrystals by cyclic voltammetry , 2003 .

[64]  Xiaogang Peng,et al.  Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals , 2003 .

[65]  Christine M. Micheel,et al.  Biological applications of colloidal nanocrystals , 2003 .

[66]  W. Webb,et al.  Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging in Vivo , 2003, Science.

[67]  M. Bruchez,et al.  Lighting up cells with quantum dots. , 2003, BioTechniques.

[68]  A. Rogach,et al.  Organization of Matter on Different Size Scales: Monodisperse Nanocrystals and Their Superstructures , 2002 .

[69]  C. Murphy Optical sensing with quantum dots. , 2002, Analytical chemistry.

[70]  A. Sutherland,et al.  Quantum dots as luminescent probes in biological systems , 2002 .

[71]  Wei Chen,et al.  Antigen/Antibody Immunocomplex from CdTe Nanoparticle Bioconjugates , 2002 .

[72]  S. Nie,et al.  Luminescent quantum dots for multiplexed biological detection and imaging. , 2002, Current opinion in biotechnology.

[73]  Shimon Weiss,et al.  Properties of Fluorescent Semiconductor Nanocrystals and their Application to Biological Labeling , 2001 .

[74]  C. Niemeyer REVIEW Nanoparticles, Proteins, and Nucleic Acids: Biotechnology Meets Materials Science , 2022 .

[75]  Nigel Pickett,et al.  Nanocrystalline semiconductors: Synthesis, properties, and perspectives , 2001 .

[76]  M. Sauer,et al.  Photophysical Dynamics of Single Molecules Studied by Spectrally-Resolved Fluorescence Lifetime Imaging Microscopy (SFLIM) , 2001 .

[77]  Dale M. Willard,et al.  CdSe−ZnS Quantum Dots as Resonance Energy Transfer Donors in a Model Protein−Protein Binding Assay , 2001 .

[78]  T. Jovin,et al.  Fluorescence lifetime imaging: multi-point calibration, minimum resolvable differences, and artifact suppression. , 2001, Cytometry.

[79]  Philippe Guyot-Sionnest,et al.  Electrochromic nanocrystal quantum dots. , 2001, Science.

[80]  A D Yoffe,et al.  Semiconductor quantum dots and related systems: Electronic, optical, luminescence and related properties of low dimensional systems , 2001 .

[81]  F. Wise,et al.  Lead salt quantum dots: the limit of strong quantum confinement. , 2000, Accounts of chemical research.

[82]  Christopher B. Murray,et al.  Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies , 2000 .

[83]  M. Rosen,et al.  The Electronic Structure of Semiconductor Nanocrystals1 , 2000 .

[84]  R. Penner Hybrid electrochemical/chemical synthesis of quantum dots. , 2000, Accounts of Chemical Research.

[85]  Alexander Eychmüller,et al.  Chemistry and photophysics of thiol-stabilized II-VI semiconductor nanocrystals , 2000 .

[86]  P. Alivisatos Colloidal quantum dots. From scaling laws to biological applications , 2000 .

[87]  P. O’Brien,et al.  Recent advances in the preparation of semiconductors as isolated nanometric particles: new routes to quantum dots , 1999 .

[88]  Takanori Inoue,et al.  Determination of Two Photon Absorption Cross Section of Fluorescein Using a Mode Locked Titanium Sapphire Laser , 1999 .

[89]  Louis E. Brus,et al.  Luminescence Photophysics in Semiconductor Nanocrystals , 1999 .

[90]  Moungi G. Bawendi,et al.  Spectroscopy of Single CdSe Nanocrystallites , 1999 .

[91]  C. Foote Chemical Sensors Special Issue , 1998 .

[92]  H. Weller Quantum size colloids: From size-dependent properties of discrete particles to self-organized superstructures , 1998 .

[93]  A. Alivisatos Perspectives on the Physical Chemistry of Semiconductor Nanocrystals , 1996 .

[94]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[95]  B. Ulfhake,et al.  Spectra and fluorescence lifetimes of lissamine rhodamine, tetramethylrhodamine isothiocyanate, texas red, and cyanine 3.18 fluorophores: influences of some environmental factors recorded with a confocal laser scanning microscope. , 1995, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[96]  C. J. Lewis,et al.  Cyanine dye labeling reagents: sulfoindocyanine succinimidyl esters. , 1993, Bioconjugate chemistry.

[97]  A. D. Yoffe,et al.  Low-dimensional systems: Quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems , 1993 .

[98]  Horst Weller,et al.  Quantized Semiconductor Particles: A novel state of matter for materials science , 1993 .

[99]  Louis E. Brus,et al.  The Quantum Mechanics of Larger Semiconductor Clusters ("Quantum Dots") , 1990 .

[100]  M. Steigerwald,et al.  Semiconductor crystallites: a class of large molecules , 1990 .

[101]  A. Henglein,et al.  Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles , 1989 .

[102]  Louis E. Brus,et al.  SYNTHESIS, STABILIZATION, AND ELECTRONIC STRUCTURE OF QUANTUM SEMICONDUCTOR NANOCLUSTERS , 1989 .

[103]  P. Schultz,et al.  Cover Picture: Expanding the Genetic Code (Angew. Chem. Int. Ed. 1/2005) , 2005 .

[104]  P. Alivisatos The use of nanocrystals in biological detection , 2004, Nature Biotechnology.

[105]  Phan T. Tran,et al.  Use of Luminescent CdSe–ZnS Nanocrystal Bioconjugates in Quantum Dot‐Based Nanosensors , 2002 .

[106]  A. Alivisatos,et al.  Nanocrystals: Building blocks for modern materials design , 1997 .

[107]  A. Henglein Fluorescence, photochemistry and size quantization effects of colloidal semiconductor particles , 1987 .