Invertebrate Central Pattern Generation Moves along

[1]  Matrix-assisted laser desorption/ionization fourier transform mass spectrometry for the identification of orcokinin neuropeptides in crustaceans using metastable decay and sustained off-resonance irradiation. , 2005, Analytical chemistry.

[2]  W. Kristan,et al.  Sequential Development of Electrical and Chemical Synaptic Connections Generates a Specific Behavioral Circuit in the Leech , 2005, The Journal of Neuroscience.

[3]  Vladimir Brezina,et al.  Modeling neuromuscular modulation in Aplysia. III. Interaction of central motor commands and peripheral modulatory state for optimal behavior. , 2005, Journal of neurophysiology.

[4]  A. Büschges Sensory control and organization of neural networks mediating coordination of multisegmental organs for locomotion. , 2005, Journal of neurophysiology.

[5]  Eve Marder,et al.  Animal-to-Animal Variability in Motor Pattern Production in Adults and during Growth , 2005, The Journal of Neuroscience.

[6]  Kevin L. Briggman,et al.  Optical Imaging of Neuronal Populations During Decision-Making , 2005, Science.

[7]  M. Goulding,et al.  Development of circuits that generate simple rhythmic behaviors in vertebrates , 2005, Current Opinion in Neurobiology.

[8]  E. Marder,et al.  Development of central pattern generating circuits , 2005, Current Opinion in Neurobiology.

[9]  Yair Manor,et al.  Synaptic depression in conjunction with A-current channels promote phase constancy in a rhythmic network. , 2005, Journal of neurophysiology.

[10]  Michael P Nusbaum,et al.  Different Sensory Systems Share Projection Neurons But Elicit Distinct Motor Patterns , 2004, The Journal of Neuroscience.

[11]  Timothy J. Fort,et al.  Modulation of an integrated central pattern generator-effector system: dopaminergic regulation of cardiac activity in the blue crab Callinectes sapidus. , 2004, Journal of neurophysiology.

[12]  Farzan Nadim,et al.  The Activity Phase of Postsynaptic Neurons in a Simplified Rhythmic Network , 2004, Journal of Computational Neuroscience.

[13]  M. P. Nusbaum,et al.  Intercircuit Control via Rhythmic Regulation of Projection Neuron Activity , 2004, The Journal of Neuroscience.

[14]  M. P. Nusbaum,et al.  Mechanosensory Activation of a Motor Circuit by Coactivation of Two Projection Neurons , 2004, Journal of Neuroscience.

[15]  J. Schmitz,et al.  Signals from load sensors underlie interjoint coordination during stepping movements of the stick insect leg. , 2004, Journal of neurophysiology.

[16]  Farzan Nadim,et al.  Dynamic Interaction of Oscillatory Neurons Coupled with Reciprocally Inhibitory Synapses Acts to Stabilize the Rhythm Period , 2004, The Journal of Neuroscience.

[17]  T. Jessell,et al.  Genetic Identification of Spinal Interneurons that Coordinate Left-Right Locomotor Activity Necessary for Walking Movements , 2004, Neuron.

[18]  L. Griffith,et al.  Electrophysiological and morphological characterization of identified motor neurons in the Drosophila third instar larva central nervous system. , 2004, Journal of neurophysiology.

[19]  A. Büschges,et al.  Synaptic drive contributing to rhythmic activation of motoneurons in the deafferented stick insect walking system , 2004, The European journal of neuroscience.

[20]  R. Meech,et al.  Nitric oxide regulates swimming in the jellyfish Aglantha digitale , 2004, The Journal of comparative neurology.

[21]  E. Marder,et al.  Nitric Oxide Inhibits the Rate and Strength of Cardiac Contractions in the Lobster Homarus americanus by Acting on the Cardiac Ganglion , 2004, The Journal of Neuroscience.

[22]  Ronald L Calabrese,et al.  Detailed model of intersegmental coordination in the timing network of the leech heartbeat central pattern generator. , 2004, Journal of neurophysiology.

[23]  J. Lu,et al.  A Model of a Segmental Oscillator in the Leech Heartbeat Neuronal Network , 2001, Journal of Computational Neuroscience.

[24]  Scott L. Hooper,et al.  Phase Maintenance in the Pyloric Pattern of the Lobster (Panulirus interruptus) Stomatogastric Ganglion , 1997, Journal of Computational Neuroscience.

[25]  Scott L. Hooper,et al.  The Pyloric Pattern of the Lobster (Panulirus interruptus) Stomatogastric Ganglion Comprises Two Phase-Maintaining Subsets , 1997, Journal of Computational Neuroscience.

[26]  Nancy Kopell,et al.  How Does the Crayfish Swimmeret System Work? Insights from Nearest-Neighbor Coupled Oscillator Models , 1997, Journal of Computational Neuroscience.

[27]  Farzan Nadim,et al.  Modeling the leech heartbeat elemental oscillator II. Exploring the parameter space , 1995, Journal of Computational Neuroscience.

[28]  Farzan Nadim,et al.  Modeling the leech heartbeat elemental oscillator I. Interactions of intrinsic and synaptic currents , 1995, Journal of Computational Neuroscience.

[29]  R. Calabrese,et al.  A persistent sodium current contributes to oscillatory activity in heart interneurons of the medicinal leech , 1994, Journal of Comparative Physiology A.

[30]  Daniel K. Hartline,et al.  Pattern generation in the lobster (Panulirus) stomatogastric ganglion , 1979, Biological Cybernetics.

[31]  D. Hartline,et al.  Pattern generation in the lobster (Panulirus) stomatogastric ganglion , 1979, Biological Cybernetics.

[32]  A. Selverston,et al.  Monosynaptic entrainment of an endogenous pacemaker network: A cellular mechanism for von Holst's magnet effect , 1979, Journal of comparative physiology.

[33]  H. Pflüger,et al.  Neuromodulatory octopaminergic neurons and their functions during insect motor behaviour. The Ernst Florey memory lecture. , 2004, Acta biologica Hungarica.

[34]  M. P. Nusbaum,et al.  Long-lasting activation of rhythmic neuronal activity by a novel mechanosensory system in the crustacean stomatogastric nervous system. , 2004, Journal of neurophysiology.

[35]  Ronald L Calabrese,et al.  Heartbeat control in leeches. I. Constriction pattern and neural modulation of blood pressure in intact animals. , 2004, Journal of neurophysiology.

[36]  R. Calabrese,et al.  Heartbeat control in leeches. II. Fictive motor pattern. , 2004, Journal of neurophysiology.

[37]  Garrison W Cottrell,et al.  Imaging Reveals Synaptic Targets of a Swim-Terminating Neuron in the Leech CNS , 2003, The Journal of Neuroscience.

[38]  P. Katz,et al.  Spike Timing-Dependent Serotonergic Neuromodulation of Synaptic Strength Intrinsic to a Central Pattern Generator Circuit , 2003, The Journal of Neuroscience.

[39]  B. Mulloney,et al.  Local commissural interneurons integrate information from intersegmental coordinating interneurons , 2003, The Journal of comparative neurology.

[40]  Eve Marder,et al.  Mass spectrometric investigation of the neuropeptide complement and release in the pericardial organs of the crab, Cancer borealis , 2003, Journal of neurochemistry.

[41]  Farzan Nadim,et al.  Contribution of synaptic depression to phase maintenance in a model rhythmic network. , 2003, Journal of neurophysiology.

[42]  Farzan Nadim,et al.  Short-Term Dynamics of a Mixed Chemical and Electrical Synapse in a Rhythmic Network , 2003, The Journal of Neuroscience.

[43]  Scott L. Hooper,et al.  Lobster (Panulirus interruptus) Pyloric Muscles Express the Motor Patterns of Three Neural Networks, Only One of Which Innervates the Muscles , 2003, The Journal of Neuroscience.

[44]  E. Marder,et al.  Episodic bouts of activity accompany recovery of rhythmic output by a neuromodulator- and activity-deprived adult neural network. , 2003, Journal of neurophysiology.

[45]  J. Jing,et al.  Two neuropeptides colocalized in a command-like neuron use distinct mechanisms to enhance its fast synaptic connection. , 2003, Journal of neurophysiology.

[46]  M. P. Nusbaum,et al.  Neuropeptidomic analysis of the brain and thoracic ganglion from the Jonah crab, Cancer borealis. , 2003, Biochemical and biophysical research communications.

[47]  E. Marder,et al.  Dopamine and histamine in the developing stomatogastric system of the lobster Homarus americanus , 2003, The Journal of comparative neurology.

[48]  M. Suster,et al.  Targeted expression of tetanus toxin reveals sets of neurons involved in larval locomotion in Drosophila. , 2003, Journal of neurobiology.

[49]  B. Mulloney,et al.  Coordination of Cellular Pattern-Generating Circuits that Control Limb Movements: The Sources of Stable Differences in Intersegmental Phases , 2003, The Journal of Neuroscience.

[50]  K. R. Weiss,et al.  Fast synaptic connections from CBIs to pattern-generating neurons in Aplysia: initiation and modification of motor programs. , 2003, Journal of neurophysiology.

[51]  Dirk Bucher,et al.  Interjoint coordination in the stick insect leg-control system: the role of positional signaling. , 2003, Journal of neurophysiology.

[52]  Stefan R. Pulver,et al.  Serotonin in the developing stomatogastric system of the lobster, Homarus americanus. , 2003, Journal of neurobiology.

[53]  Eve Marder,et al.  The Functional Consequences of Changes in the Strength and Duration of Synaptic Inputs to Oscillatory Neurons , 2003, The Journal of Neuroscience.

[54]  Jeffrey B. Thuma,et al.  Quantification of cardiac sac network effects on a movement-related parameter of pyloric network output in the lobster. , 2002, Journal of neurophysiology.

[55]  M. P. Nusbaum Regulating Peptidergic Modulation of Rhythmically Active Neural Circuits , 2003, Brain, Behavior and Evolution.

[56]  William B Kristan,et al.  Evidence for Sequential Decision Making in the Medicinal Leech , 2002, The Journal of Neuroscience.

[57]  M. A. Masino,et al.  Bursting in Leech Heart Interneurons: Cell-Autonomous and Network-Based Mechanisms , 2002, The Journal of Neuroscience.

[58]  John Simmers,et al.  Long-term neuromodulatory regulation of a motor pattern-generating network: maintenance of synaptic efficacy and oscillatory properties. , 2002, Journal of neurophysiology.

[59]  Stefan R. Pulver,et al.  Neuromodulatory complement of the pericardial organs in the embryonic lobster, homarus americanus , 2002, The Journal of comparative neurology.

[60]  Jianhua Cang,et al.  Model for intersegmental coordination of leech swimming: central and sensory mechanisms. , 2002, Journal of neurophysiology.

[61]  Ronald L Calabrese,et al.  A Functional Asymmetry in the Leech Heartbeat Timing Network Is Revealed by Driving the Network across Various Cycle Periods , 2002, The Journal of Neuroscience.

[62]  Eve Marder,et al.  Cellular, synaptic and network effects of neuromodulation , 2002, Neural Networks.

[63]  M. P. Nusbaum,et al.  A small-systems approach to motor pattern generation , 2002, Nature.

[64]  M. P. Nusbaum,et al.  Extracellular Peptidase Activity Tunes Motor Pattern Modulation , 2002, The Journal of Neuroscience.

[65]  M. Suster,et al.  Embryonic assembly of a central pattern generator without sensory input , 2002, Nature.

[66]  F. Hucho,et al.  Identification of orcokinins in single neurons in the stomatogastric nervous system of the crayfish, Cherax destructor , 2002, The Journal of comparative neurology.

[67]  Eve Marder,et al.  Colocalized Neuropeptides Activate a Central Pattern Generator by Acting on Different Circuit Targets , 2002, The Journal of Neuroscience.

[68]  Ronald L Calabrese,et al.  Model of intersegmental coordination in the leech heartbeat neuronal network. , 2002, Journal of neurophysiology.

[69]  Ronald L Calabrese,et al.  Period differences between segmental oscillators produce intersegmental phase differences in the leech heartbeat timing network. , 2002, Journal of neurophysiology.

[70]  Ronald L Calabrese,et al.  Phase relationships between segmentally organized oscillators in the leech heartbeat pattern generating network. , 2002, Journal of neurophysiology.

[71]  William N Frost,et al.  Highly Dissimilar Behaviors Mediated by a Multifunctional Network in the Marine Mollusk Tritonia diomedea , 2002, The Journal of Neuroscience.

[72]  J. Jing,et al.  Interneuronal and peptidergic control of motor pattern switching in Aplysia. , 2002, Journal of neurophysiology.

[73]  Pierre Meyrand,et al.  Electrical coupling can prevent expression of adult-like properties in an embryonic neural circuit. , 2002, Journal of neurophysiology.

[74]  K. R. Weiss,et al.  Cloning, expression and processing of the CP2 neuropeptide precursor of Aplysia , 2001, Peptides.

[75]  R. Harris-Warrick,et al.  Amine modulation of the transient potassium current in identified cells of the lobster stomatogastric ganglion. , 2001, Journal of neurophysiology.

[76]  E. Marder,et al.  Central pattern generators and the control of rhythmic movements , 2001, Current Biology.

[77]  Brian Mulloney,et al.  Limb Movements during Locomotion: Tests of a Model of an Intersegmental Coordinating Circuit , 2001, The Journal of Neuroscience.

[78]  Xintian Yu,et al.  Sensory modification of leech swimming: interactions between ventral stretch receptors and swim-related neurons , 2001, Journal of Comparative Physiology A.

[79]  E Marder,et al.  Modulators with Convergent Cellular Actions Elicit Distinct Circuit Outputs , 2001, The Journal of Neuroscience.

[80]  J. Jing,et al.  Cerebrin prohormone processing, distribution and action in Aplysia californica , 2001, Journal of neurochemistry.

[81]  E. Marder,et al.  The roles of co-transmission in neural network modulation , 2001, Trends in Neurosciences.

[82]  K. R. Weiss,et al.  Targeting of Peptidergic Vesicles in Cotransmitting Terminals , 2001, The Journal of Neuroscience.

[83]  Lee G. Morris,et al.  Mechanisms underlying stabilization of temporally summated muscle contractions in the lobster (Panulirus) pyloric system. , 2001, Journal of neurophysiology.

[84]  S. Hooper,et al.  Motor neuron activity is often insufficient to predict motor response , 2000, Current Opinion in Neurobiology.

[85]  W. Stein,et al.  Projection Neurons with Shared Cotransmitters Elicit Different Motor Patterns from the Same Neural Circuit , 2000, The Journal of Neuroscience.

[86]  R. Satterlie,et al.  Distribution of NADPH‐diaphorase reactivity and effects of nitric oxide on feeding and locomotory circuitry in the pteropod mollusc, Clione limacina , 2000 .

[87]  W. O. Friesen,et al.  Sensory Modification of Leech Swimming: Rhythmic Activity of Ventral Stretch Receptors Can Change Intersegmental Phase Relationships , 2000, The Journal of Neuroscience.

[88]  E Marder,et al.  Multiple Peptides Converge to Activate the Same Voltage-Dependent Current in a Central Pattern-Generating Circuit , 2000, The Journal of Neuroscience.

[89]  K. R. Weiss,et al.  Temporal Pattern Dependence of Neuronal Peptide Transmitter Release: Models and Experiments , 2000, The Journal of Neuroscience.

[90]  C. Govind,et al.  Crab stomach pyloric muscles display not only excitatory but inhibitory and neuromodulatory nerve terminals , 2000, The Journal of comparative neurology.

[91]  K. R. Weiss,et al.  Intrinsic and extrinsic modulation of a single central pattern generating circuit. , 2000, Journal of neurophysiology.

[92]  E Marder,et al.  GABA and responses to GABA in the stomatogastric ganglion of the crab Cancer borealis. , 2000, The Journal of experimental biology.

[93]  E Marder,et al.  The actions of crustacean cardioactive peptide on adult and developing stomatogastric ganglion motor patterns. , 2000, Journal of neurobiology.

[94]  J. Simmers,et al.  Transition to endogenous bursting after long-term decentralization requires De novo transcription in a critical time window. , 2000, Journal of neurophysiology.

[95]  Allen I. Selverston,et al.  Modeling observed chaotic oscillations in bursting neurons: the role of calcium dynamics and IP3 , 2000, Biological Cybernetics.

[96]  R. Satterlie,et al.  Serotonin-induced spike narrowing in a locomotor pattern generator permits increases in cycle frequency during accelerations. , 2000, Journal of neurophysiology.

[97]  J. Sweedler,et al.  Single-cell MALDI: a new tool for direct peptide profiling. , 2000, Trends in biotechnology.

[98]  K. R. Weiss,et al.  Peptide Cotransmitter Release from Motorneuron B16 inAplysia californica: Costorage, Corelease, and Functional Implications , 2000, The Journal of Neuroscience.

[99]  A. Selverston,et al.  Group I, II, and III mGluR compounds affect rhythm generation in the gastric circuit of the crustacean stomatogastric ganglion. , 2000, Journal of neurophysiology.

[100]  Scott L. Hooper,et al.  Muscles express motor patterns of non-innervating neural networks by filtering broad-band input , 2000, Nature Neuroscience.

[101]  B Hedwig,et al.  Control of cricket stridulation by a command neuron: efficacy depends on the behavioral state. , 2000, Journal of neurophysiology.

[102]  R. Satterlie,et al.  Distribution of NADPH-diaphorase reactivity and effects of nitric oxide on feeding and locomotory circuitry in the pteropod mollusc, Clione limacina. , 2000, The Journal of comparative neurology.

[103]  The functional role of octopaminergic neurons in insect motor behavior. , 2000, Acta biologica Hungarica.

[104]  V Brezina,et al.  The neuromuscular transform constrains the production of functional rhythmic behaviors. , 2000, Journal of neurophysiology.

[105]  I. V. Orekhova,et al.  Optimization of rhythmic behaviors by modulation of the neuromuscular transform. , 2000, Journal of neurophysiology.

[106]  Pierre Meyrand,et al.  Central inputs mask multiple adult neural networks within a single embryonic network , 1999, Nature.

[107]  J. Sweedler,et al.  In situ sequencing of peptides from biological tissues and single cells using MALDI-PSD/CID analysis. , 1999, Analytical chemistry.

[108]  W L Miller,et al.  Maturation of lobster stomatogastric ganglion rhythmic activity. , 1999, Journal of neurophysiology.

[109]  M. P. Nusbaum,et al.  Distinct Functions for Cotransmitters Mediating Motor Pattern Selection , 1999, The Journal of Neuroscience.

[110]  A Ayali,et al.  Monoamine Control of the Pacemaker Kernel and Cycle Frequency in the Lobster Pyloric Network , 1999, The Journal of Neuroscience.

[111]  E Marder,et al.  Coordination of Fast and Slow Rhythmic Neuronal Circuits , 1999, The Journal of Neuroscience.

[112]  E. Marder,et al.  Synaptic depression creates a switch that controls the frequency of an oscillatory circuit. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[113]  R Huerta,et al.  Dynamic control of irregular bursting in an identified neuron of an oscillatory circuit. , 1999, Journal of neurophysiology.

[114]  Timothy W. Cacciatore,et al.  Identification of Neural Circuits by Imaging Coherent Electrical Activity with FRET-Based Dyes , 1999, Neuron.

[115]  E Marder,et al.  Different Proctolin Neurons Elicit Distinct Motor Patterns from a Multifunctional Neuronal Network , 1999, The Journal of Neuroscience.

[116]  Eve Marder,et al.  Network Stability from Activity-Dependent Regulation of Neuronal Conductances , 1999, Neural Computation.

[117]  E Marder,et al.  Sequential developmental acquisition of neuromodulatory inputs to a central pattern‐generating network , 1999, The Journal of comparative neurology.

[118]  E Marder,et al.  Sequential developmental acquisition of cotransmitters in identified sensory neurons of the stomatogastric nervous system of the lobsters, Homarus americanus and Homarus gammarus , 1999, The Journal of comparative neurology.

[119]  W. Otto Friesen,et al.  Sensory Feedback Can Coordinate the Swimming Activity of the Leech , 1999, The Journal of Neuroscience.

[120]  B Mulloney,et al.  Coordination of limb movements: three types of intersegmental interneurons in the swimmeret system and their responses to changes in excitation. , 1999, Journal of neurophysiology.

[121]  A. Büschges,et al.  Role of proprioceptive signals from an insect femur-tibia joint in patterning motoneuronal activity of an adjacent leg joint. , 1999, Journal of neurophysiology.

[122]  K. R. Weiss,et al.  C-PR neuron of Aplysia has differential effects on "Feeding" cerebral interneurons, including myomodulin-positive CBI-12. , 1999, Journal of neurophysiology.

[123]  R. Harris-Warrick,et al.  Dopamine modulates two potassium currents and inhibits the intrinsic firing properties of an identified motor neuron in a central pattern generator network. , 1999, Journal of neurophysiology.

[124]  B. Mulloney,et al.  Intersegmental coordination in invertebrates and vertebrates , 1998, Current Opinion in Neurobiology.

[125]  S. Hooper Transduction of temporal patterns by single neurons , 1998, Nature Neuroscience.

[126]  R. Harris-Warrick,et al.  Distributed Effects of Dopamine Modulation in the Crustacean Pyloric Network a , 1998, Annals of the New York Academy of Sciences.

[127]  E Marder,et al.  Temporal dynamics of convergent modulation at a crustacean neuromuscular junction. , 1998, Journal of neurophysiology.

[128]  F K Skinner,et al.  Intersegmental Coordination of Limb Movements during Locomotion: Mathematical Models Predict Circuits That Drive Swimmeret Beating , 1998, The Journal of Neuroscience.

[129]  Lee G. Morris,et al.  Muscle Response to Changing Neuronal Input in the Lobster(Panulirus Interruptus) Stomatogastric System: Slow Muscle Properties Can Transform Rhythmic Input into Tonic Output , 1998, The Journal of Neuroscience.

[130]  J. Sweedler,et al.  Proteolytic processing of the Aplysia egg-laying hormone prohormone. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[131]  J. Simmers,et al.  Neuromodulatory Inputs Maintain Expression of a Lobster Motor Pattern-Generating Network in a Modulation-Dependent State: Evidence from Long-Term Decentralization In Vitro , 1998, The Journal of Neuroscience.

[132]  Randall D. Beer,et al.  The brain has a body: adaptive behavior emerges from interactions of nervous system, body and environment , 1997, Trends in Neurosciences.

[133]  S. Hooper,et al.  Muscle Response to Changing Neuronal Input in the Lobster (Panulirus interruptus) Stomatogastric System: Spike Number- versus Spike Frequency-Dependent Domains , 1997, The Journal of Neuroscience.

[134]  E. Marder,et al.  Temporal Dynamics of Graded Synaptic Transmission in the Lobster Stomatogastric Ganglion , 1997, The Journal of Neuroscience.

[135]  Brian K. Shaw,et al.  The Neuronal Basis of the Behavioral Choice between Swimming and Shortening in the Leech: Control Is Not Selectively Exercised at Higher Circuit Levels , 1997, The Journal of Neuroscience.

[136]  D A Price,et al.  Release of Peptide Cotransmitters in Aplysia: Regulation and Functional Implications , 1996, The Journal of Neuroscience.

[137]  K. R. Weiss,et al.  Costorage and Corelease of Modulatory Peptide Cotransmitters with Partially Antagonistic Actions on the Accessory Radula Closer Muscle ofAplysia californica , 1996, The Journal of Neuroscience.

[138]  Nikolai F. Rulkov,et al.  Synchronized Action of Synaptically Coupled Chaotic Model Neurons , 1996, Neural Computation.

[139]  J. Sweedler,et al.  Excess salt removal with matrix rinsing: direct peptide profiling of neurons from marine invertebrates using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. , 1996, Journal of mass spectrometry : JMS.

[140]  E. Marder,et al.  Mechanisms of oscillation in dynamic clamp constructed two-cell half-center circuits. , 1996, Journal of neurophysiology.

[141]  E. Marder,et al.  Principles of rhythmic motor pattern generation. , 1996, Physiological reviews.

[142]  I. Hurwitz,et al.  B64, a newly identified central pattern generator element producing a phase switch from protraction to retraction in buccal motor programs of Aplysia californica. , 1996, Journal of neurophysiology.

[143]  H. Chiel,et al.  Activity patterns of the B31/B32 pattern initiators innervating the I2 muscle of the buccal mass during normal feeding movements in Aplysia californica. , 1996, Journal of neurophysiology.

[144]  K. Graubard,et al.  Nitric oxide and peptide neurohormones activate cGMP synthesis in the crab stomatogastric nervous system , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[145]  Paul S. Katz,et al.  Intrinsic neuromodulation: altering neuronal circuits from within , 1996, Trends in Neurosciences.

[146]  P. Katz,et al.  Intrinsic neuromodulation in the Tritonia swim CPG: serotonin mediates both neuromodulation and neurotransmission by the dorsal swim interneurons. , 1995, Journal of neurophysiology.

[147]  E. Marder,et al.  Matrix of neuromodulators in neurosecretory structures of the crab Cancer borealis. , 1995, The Journal of experimental biology.

[148]  R. Calabrese,et al.  Outward currents in heart motor neurons of the medicinal leech. , 1995, Journal of neurophysiology.

[149]  Pierre Meyrand,et al.  A switch between two modes of synaptic transmission mediated by presynaptic inhibition , 1995, Nature.

[150]  S. Gueron,et al.  Dopamine modulation of two subthreshold currents produces phase shifts in activity of an identified motoneuron. , 1995, Journal of neurophysiology.

[151]  P. Katz,et al.  Intrinsic neuromodulation in the Tritonia swim CPG: the serotonergic dorsal swim interneurons act presynaptically to enhance transmitter release from interneuron C2 , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[152]  P. Meyrand,et al.  Functional differentiation of adult neural circuits from a single embryonic network , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[153]  W. O. Friesen,et al.  Neuronal control of leech swimming. , 1995, Journal of neurobiology.

[154]  P. Brodfuehrer,et al.  Regulation of the segmental swim-generating system by a pair of identified interneurons in the leech head ganglion. , 1995, Journal of neurophysiology.

[155]  J. Schmitz,et al.  Rhythmic patterns in the thoracic nerve cord of the stick insect induced by pilocarpine , 1995, The Journal of experimental biology.

[156]  R. Harris-Warrick,et al.  Dopamine modulation of transient potassium current evokes phase shifts in a central pattern generator network , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[157]  W. O. Friesen,et al.  Reciprocal inhibition: A mechanism underlying oscillatory animal movements , 1994, Neuroscience & Biobehavioral Reviews.

[158]  C R Jiménez,et al.  Direct peptide profiling by mass spectrometry of single identified neurons reveals complex neuropeptide-processing pattern. , 1994, The Journal of biological chemistry.

[159]  E. Marder,et al.  Switching neurons are integral members of multiple oscillatory networks , 1994, Current Biology.

[160]  R. Harris-Warrick,et al.  Multiple receptors mediate the modulatory effects of serotonergic neurons in a small neural network. , 1994, The Journal of experimental biology.

[161]  M. Moulins,et al.  Dynamic construction of a neural network from multiple pattern generators in the lobster stomatogastric nervous system , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[162]  R. Harris-Warrick,et al.  5-HT modulation of hyperpolarization-activated inward current and calcium-dependent outward current in a crustacean motor neuron. , 1992, Journal of neurophysiology.

[163]  R. Harris-Warrick,et al.  Physiological role of the transient potassium current in the pyloric circuit of the lobster stomatogastric ganglion. , 1992, Journal of neurophysiology.

[164]  R. Harris-Warrick In: Dynamic Biological Networks: The Stomatogastric Nervous System , 1992 .

[165]  I Kupfermann,et al.  Identification and characterization of cerebral-to-buccal interneurons implicated in the control of motor programs associated with feeding in Aplysia , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[166]  I. Kupfermann Functional studies of cotransmission. , 1991, Physiological reviews.

[167]  M. Moulins,et al.  Construction of a pattern-generating circuit with neurons of different networks , 1991, Nature.

[168]  R. Calabrese,et al.  Calcium currents and graded synaptic transmission between heart interneurons of the leech , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[169]  E. Marder,et al.  Neurons that form multiple pattern generators: identification and multiple activity patterns of gastric/pyloric neurons in the crab stomatogastric system. , 1991, Journal of neurophysiology.

[170]  R. Harris-Warrick,et al.  Modulation of neural networks for behavior. , 1991, Annual review of neuroscience.

[171]  E. Marder,et al.  Neuropeptide fusion of two motor-pattern generator circuits , 1990, Nature.

[172]  R. Harris-Warrick,et al.  Serotonergic/cholinergic muscle receptor cells in the crab stomatogastric nervous system. II. Rapid nicotinic and prolonged modulatory effects on neurons in the stomatogastric ganglion. , 1989, Journal of neurophysiology.

[173]  JD Angstadt,et al.  A hyperpolarization-activated inward current in heart interneurons of the medicinal leech , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[174]  S. Thompson,et al.  Hyperpolarizing responses to stretch in sensory neurones innervating leech body wall muscle. , 1988, The Journal of physiology.

[175]  R. Calabrese,et al.  Ionic conductances underlying the activity of interneurons that control heartbeat in the medicinal leech , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[176]  R. Calabrese,et al.  Slow oscillations of membrane potential in interneurons that control heartbeat in the medicinal leech , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[177]  E Marder,et al.  Modulation of the lobster pyloric rhythm by the peptide proctolin , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[178]  I Kupfermann,et al.  Multiple neuropeptides in cholinergic motor neurons of Aplysia: evidence for modulation intrinsic to the motor circuit. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[179]  P. A. Getting,et al.  Mechanisms of pattern generation underlying swimming in Tritonia. IV. Gating of central pattern generator. , 1985, Journal of neurophysiology.

[180]  E. Marder,et al.  Electrically coupled pacemaker neurons respond differently to same physiological inputs and neurotransmitters. , 1984, Journal of neurophysiology.

[181]  E. Marder,et al.  A mechanism for production of phase shifts in a pattern generator. , 1984, Journal of neurophysiology.

[182]  Pearce Ra,et al.  Intersegmental coordination of leech swimming: comparison of in situ and isolated nerve cord activity with body wall movement. , 1984 .

[183]  W. O. Friesen,et al.  Intersegmental coordination of leech swimming: comparison of in situ and isolated nerve cord activity with body wall movement , 1984, Brain Research.

[184]  U. Bässler,et al.  Motor Output of the Denervated Thoracic Ventral Nerve Cord in the Stick Insect Carausius Morosus , 1983 .

[185]  P. A. Getting Mechanisms of pattern generation underlying swimming in Tritonia. III. Intrinsic and synaptic mechanisms for delayed excitation. , 1983, Journal of neurophysiology.

[186]  E. Marder,et al.  Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. III. Synaptic connections of electrically coupled pyloric neurons. , 1982, Journal of neurophysiology.

[187]  W. O. Friesen,et al.  Neuronal generation of the leech swimming movement. , 1978, Science.

[188]  K. R. Weiss,et al.  The command neuron concept , 1978, Behavioral and Brain Sciences.

[189]  D. Perkel,et al.  Motor Pattern Production in Reciprocally Inhibitory Neurons Exhibiting Postinhibitory Rebound , 1974, Science.

[190]  F. A. Steiner Neurotransmitters and Neuromodulators , 1974 .

[191]  J. Kehoe Three acetylcholine receptors in Aplysia neurones , 1972, The Journal of physiology.

[192]  C. Wiersma,et al.  INTERNEURONS COMMANDING SWIMMERET MOVEMENTS IN THE CRAYFISH, PROCAMBARUS CLARKI (GIRARD). , 1964, Comparative biochemistry and physiology.

[193]  T. Brown On the nature of the fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system , 1914, The Journal of physiology.

[194]  T. Brown The intrinsic factors in the act of progression in the mammal , 1911 .