The intrinsic tyrosine fluorescence of histone H1. Steady state and fluorescence decay studies reveal heterogeneous emission.

[1]  L. Libertini,et al.  Construction and tuning of a monophoton decay fluorometer with high‐ resolution capabilities , 1984 .

[2]  L. Libertini,et al.  Effects of pH on the stability of chromatin core particles. , 1984, Nucleic acids research.

[3]  L. Libertini,et al.  Resolution of closely spaced fluorescence decays—the luminescence background of the RCA 8850 photomultiplier and other sources of error , 1983 .

[4]  J. Baudier,et al.  The S100‐b Protein: Tyrosine Residues Do Not Exhibit an Abnormal Fluorescence Spectrum , 1983, Journal of neurochemistry.

[5]  E. Small,et al.  Exponential depression as a test of estimated decay parameters , 1982 .

[6]  M. Duñach,et al.  The state of tyrosine and phenylalanine residues in proteins analyzed by fourth-derivative spectrophotometry. Histone H1 and ribonuclease A. , 1982, European journal of biochemistry.

[7]  L. Libertini,et al.  Effects of pH on low-salt transition of chromatin core particles. , 1982, Biochemistry.

[8]  C. Kay,et al.  Physicochemical and optical studies on calcium- and potassium-induced conformational changes in bovine brain S-100b protein. , 1982, Biochemistry.

[9]  K. Watanabe,et al.  Lifetime of tyrosine fluorescence in nucleosome core particles. , 1982, Journal of biochemistry.

[10]  J. Demaille,et al.  Tyrosine fluorescence of ram testis and octopus calmodulins. Effects of calcium, magnesium, and ionic strength. , 1981, Biochemistry.

[11]  J. Longworth A NEW COMPONENT IN PROTEIN FLUORESCENCE * , 1981, Annals of the New York Academy of Sciences.

[12]  L. Libertini,et al.  Salt induced transitions of chromatin core particles studied by tyrosine fluorescence anisotropy. , 1980, Nucleic acids research.

[13]  T. Kimura,et al.  Conformation-associated anomalous tyrosine fluorescence of adrenodoxin. , 1980, The Journal of biological chemistry.

[14]  J. Toulmé,et al.  QUENCHING OF TYROSINE FLUORESCENCE BY PHOSPHATE IONS: A MODEL STUDY FOR PROTEIN‐NUCLEIC ACID COMPLEXES , 1979 .

[15]  A. Petit,et al.  Charge transfer to solvent state. 4. Luminescence of phenol and tyrosine in different aqueous solvents at 300 and 77 K , 1979 .

[16]  Okiyasu Shimizu,et al.  EFFECT OF PHOSPHATE ION ON FLUORESCENT CHARACTERISTICS OF TYROSINE AND ITS CONJUGATE BASE , 1979 .

[17]  A. Szabo,et al.  Excited state acid–base equilibrium of tyrosine , 1978 .

[18]  P. Wahl,et al.  Pulsefluorimetry of tyrosyl peptides. , 1978, Biophysical chemistry.

[19]  P. Wahl,et al.  Block oligopeptides (L‐lysyl)m‐(L‐alanyl)n‐L‐Tyrosyl‐(L‐Alanyl)n‐(L‐Lysyl)m. II. Circular dichroism and pulsefluorimetry conformational studies , 1978 .

[20]  E. Small,et al.  On moment index displacement , 1977 .

[21]  V. Giancotti,et al.  Tyrosine fluorescence of two tryptophan-free proteins: histones H1 and H5. , 1977, Biophysical chemistry.

[22]  M. Smerdon,et al.  Conformational changes in subfractions of calf thymus histone H1. , 1976, Biochemistry.

[23]  E. Small,et al.  The use of moment index displacement in analyzing fluorescence time‐decay data , 1976 .

[24]  P. Cary,et al.  Studies on the role and mode of operation of the very-lysine-rich histone H1 (F1) in eukaryote chromatin. The conformation of histone H1. , 1975, European journal of biochemistry.

[25]  E. Small,et al.  A computerized fluorescence anisotropy spectrometer. , 1974, Analytical biochemistry.

[26]  G. Rotilio,et al.  Parsley plastocyanin. The possible presence of sulfhydryl and tyrosine in the copper environment. , 1974, Biochemistry.

[27]  I. Isenberg On the theory of fluorescence decay experiments. I. Nonrandom distortions , 1973 .

[28]  I. Isenberg On the theory of fluorescence decay experiments. II. Statistics , 1973 .

[29]  M. El-Bayoumi,et al.  FLUORESCENCE QUENCHING IN PHENYLALANINE AND MODEL COMPOUNDS * , 1972, Photochemistry and photobiology.

[30]  M. Bustin Conservative amino-acid replacement in the tyrosine region of the lysine-rich histones. , 1972, European journal of biochemistry.

[31]  R. D. Dyson,et al.  The analysis of fluorescence decay by a method of moments. , 1969, Biophysical journal.

[32]  T. T. Herskovits,et al.  Studies of the location of tyrosyl and tryptophyl residues in proteins. I. Solvent perturbation data of model compounds. , 1968, Biochemistry.

[33]  E. W. Johns Studies on histones. 7. Preparative methods for histone fractions from calf thymus. , 1964, The Biochemical journal.

[34]  J. Feitelson On the Mechanism of Fluorescence Quenching. Tyrosine and Similar Compounds , 1964 .

[35]  A. Szabo,et al.  Tyrosine fluorescence at 345 nm in proteins lacking tryptophan , 1979 .

[36]  I. Isenberg 5 – Protein-Protein Interactions of Histones , 1978 .

[37]  I. Isenberg Physical Properties of the Inner Histones (H2a, H2b, H3, H4) , 1977 .

[38]  J. W. Longworth,et al.  Luminescence of Polypeptides and Proteins , 1971 .

[39]  S. Lehrer,et al.  Ultraviolet irradiation effects in poly-L-tyrosine and model compounds. Identification of bityrosine as a photoproduct. , 1967, Biochemistry.