TABBIE: Pretrained Representations of Tabular Data
暂无分享,去创建一个
[1] Erhard Rahm,et al. A survey of approaches to automatic schema matching , 2001, The VLDB Journal.
[2] Jimmy Ba,et al. Adam: A Method for Stochastic Optimization , 2014, ICLR.
[3] Quoc V. Le,et al. ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators , 2020, ICLR.
[4] David W. Embley,et al. Table-processing paradigms: a research survey , 2006, International Journal of Document Analysis and Recognition (IJDAR).
[5] Chen Liang,et al. Memory Augmented Policy Optimization for Program Synthesis and Semantic Parsing , 2018, NeurIPS.
[6] Jeff Johnson,et al. Billion-Scale Similarity Search with GPUs , 2017, IEEE Transactions on Big Data.
[7] Gerhard Weikum,et al. WWW 2007 / Track: Semantic Web Session: Ontologies ABSTRACT YAGO: A Core of Semantic Knowledge , 2022 .
[8] Thomas Muller,et al. TaPas: Weakly Supervised Table Parsing via Pre-training , 2020, ACL.
[9] Luke S. Zettlemoyer,et al. Deep Contextualized Word Representations , 2018, NAACL.
[10] W. Tan,et al. Sato , 2019, Proc. VLDB Endow..
[11] Brian L. Price,et al. Deep Splitting and Merging for Table Structure Decomposition , 2019, 2019 International Conference on Document Analysis and Recognition (ICDAR).
[12] Alexandre Lacoste,et al. Quantifying the Carbon Emissions of Machine Learning , 2019, ArXiv.
[13] Tim Kraska,et al. Sherlock: A Deep Learning Approach to Semantic Data Type Detection , 2019, KDD.
[14] Lukasz Kaiser,et al. Attention is All you Need , 2017, NIPS.
[15] Sunita Sarawagi,et al. Annotating and searching web tables using entities, types and relationships , 2010, Proc. VLDB Endow..
[16] Krisztian Balog,et al. Web Table Extraction, Retrieval, and Augmentation: A Survey , 2020, ACM Trans. Intell. Syst. Technol..
[17] Kaiming He,et al. Exploring the Limits of Weakly Supervised Pretraining , 2018, ECCV.
[18] Jayant Madhavan,et al. Recovering Semantics of Tables on the Web , 2011, Proc. VLDB Endow..
[19] Krisztian Balog,et al. EntiTables: Smart Assistance for Entity-Focused Tables , 2017, SIGIR.
[20] Tim Kraska,et al. VizNet: Towards A Large-Scale Visualization Learning and Benchmarking Repository , 2019, CHI.
[21] Krisztian Balog,et al. Table2Vec: Neural Word and Entity Embeddings for Table Population and Retrieval , 2019, SIGIR.
[22] Ming-Wei Chang,et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.
[23] C. V. Jawahar,et al. Table Structure Recognition using Top-Down and Bottom-Up Cues , 2020, ECCV.
[24] Kugatsu Sadamitsu,et al. Understanding the Semantic Structures of Tables with a Hybrid Deep Neural Network Architecture , 2017, AAAI.
[25] Lucian Popa,et al. Global Table Extractor (GTE): A Framework for Joint Table Identification and Cell Structure Recognition Using Visual Context , 2020, ArXiv.
[26] Daisy Zhe Wang,et al. WebTables: exploring the power of tables on the web , 2008, Proc. VLDB Endow..
[27] You Wu,et al. TURL , 2020, Proc. VLDB Endow..
[28] AnHai Doan,et al. Corpus-based schema matching , 2005, 21st International Conference on Data Engineering (ICDE'05).
[29] Percy Liang,et al. Compositional Semantic Parsing on Semi-Structured Tables , 2015, ACL.
[30] Graham Neubig,et al. TaBERT: Pretraining for Joint Understanding of Textual and Tabular Data , 2020, ACL.
[31] Omer Levy,et al. RoBERTa: A Robustly Optimized BERT Pretraining Approach , 2019, ArXiv.
[32] Krisztian Balog,et al. Novel Entity Discovery from Web Tables , 2020, WWW.
[33] Reynold Xin,et al. Finding related tables , 2012, SIGMOD Conference.
[34] Erhard Rahm,et al. Generic Schema Matching with Cupid , 2001, VLDB.
[35] Sameer Singh,et al. Do NLP Models Know Numbers? Probing Numeracy in Embeddings , 2019, EMNLP.