Dynamics of Chromatin and Transcription during Transient Depletion of the RSC Chromatin Remodeling Complex

[1]  E. O'Duibhir,et al.  Sequence-Directed Action of RSC Remodeler and General Regulatory Factors Modulates +1 Nucleosome Position to Facilitate Transcription. , 2018, Molecular cell.

[2]  N. Friedman,et al.  Fine-Resolution Mapping of TF Binding and Chromatin Interactions , 2018, Cell reports.

[3]  Johannes Zuber,et al.  Thiol-linked alkylation of RNA to assess expression dynamics , 2017, Nature Methods.

[4]  Bongsoo Park,et al.  Genomic Nucleosome Organization Reconstituted with Pure Proteins , 2016, Cell.

[5]  N. Barkai,et al.  Expression homeostasis during DNA replication , 2016, Science.

[6]  D. Clark,et al.  The ISW1 and CHD1 ATP-dependent chromatin remodelers compete to set nucleosome spacing in vivo , 2016, Nucleic acids research.

[7]  Ashby J. Morrison,et al.  The INO80 Complex Requires the Arp5-Ies6 Subcomplex for Chromatin Remodeling and Metabolic Regulation , 2016, Molecular and Cellular Biology.

[8]  Nir Friedman,et al.  High-Resolution Chromatin Dynamics during a Yeast Stress Response , 2015, Molecular cell.

[9]  B. Cairns,et al.  The chromatin remodelers RSC and ISW1 display functional and chromatin-based promoter antagonism , 2015, eLife.

[10]  Srinivas Ramachandran,et al.  Asymmetric nucleosomes flank promoters in the budding yeast genome , 2015, Genome research.

[11]  M. Palumbo,et al.  The RSC complex localizes to coding sequences to regulate Pol II and histone occupancy. , 2014, Molecular cell.

[12]  Åsa K. Björklund,et al.  Tn5 transposase and tagmentation procedures for massively scaled sequencing projects , 2014, Genome research.

[13]  Roger D Kornberg,et al.  Role of DNA sequence in chromatin remodeling and the formation of nucleosome-free regions , 2014, Genes & development.

[14]  H. A. Cole,et al.  RSC-dependent constructive and destructive interference between opposing arrays of phased nucleosomes in yeast , 2014, Genome research.

[15]  Åsa K. Björklund,et al.  Full-length RNA-seq from single cells using Smart-seq2 , 2014, Nature Protocols.

[16]  Erik van Nimwegen,et al.  Nucleosome Free Regions in Yeast Promoters Result from Competitive Binding of Transcription Factors That Interact with Chromatin Modifiers , 2013, PLoS Comput. Biol..

[17]  H. Ulrich,et al.  An expanded tool kit for the auxin-inducible degron system in budding yeast , 2013, Yeast.

[18]  L. Steinmetz,et al.  Extensive transcriptional heterogeneity revealed by isoform profiling , 2013, Nature.

[19]  I. Amit,et al.  High-throughput chromatin immunoprecipitation for genome-wide mapping of in vivo protein-DNA interactions and epigenomic states , 2013, Nature Protocols.

[20]  W. Gilbert,et al.  Alternative transcription start site selection leads to large differences in translation activity in yeast. , 2012, RNA.

[21]  Kevin Struhl,et al.  A functional evolutionary approach to identify determinants of nucleosome positioning: a unifying model for establishing the genome-wide pattern. , 2012, Molecular cell.

[22]  B. Pugh,et al.  Genome-wide Nucleosome Specificity and Directionality of Chromatin Remodelers , 2012, Cell.

[23]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[24]  F. Winston,et al.  Chromatin and Transcription in Yeast , 2012, Genetics.

[25]  B. Pugh,et al.  Genome-wide structure and organization of eukaryotic pre-initiation complexes , 2011, Nature.

[26]  Geoffrey J. Barton,et al.  A Role for Snf2-Related Nucleosome-Spacing Enzymes in Genome-Wide Nucleosome Organization , 2011, Science.

[27]  D. Schübeler,et al.  Determinants and dynamics of genome accessibility , 2011, Nature Reviews Genetics.

[28]  Hong Ma,et al.  Stable and dynamic nucleosome states during a meiotic developmental process. , 2011, Genome research.

[29]  Zhenhai Zhang,et al.  A Packing Mechanism for Nucleosome Organization Reconstituted Across a Eukaryotic Genome , 2011, Science.

[30]  B. Maier-Davis,et al.  Selective Removal of Promoter Nucleosomes by the RSC Chromatin Remodeling Complex , 2011, Nature Structural &Molecular Biology.

[31]  D. Angelov,et al.  RSC remodeling of oligo-nucleosomes: an atomic force microscopy study , 2010, Nucleic acids research.

[32]  M. Méchali,et al.  Eukaryotic DNA replication origins: many choices for appropriate answers , 2010, Nature Reviews Molecular Cell Biology.

[33]  O. Rando,et al.  Chromatin as a potential carrier of heritable information. , 2010, Current opinion in cell biology.

[34]  N. Barkai,et al.  which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Widespread remodeling of mid-coding sequence nucleosomes by Isw1 , 2010 .

[35]  Xin Wang,et al.  A RSC/Nucleosome Complex Determines Chromatin Architecture and Facilitates Activator Binding , 2010, Cell.

[36]  Nir Friedman,et al.  High-resolution nucleosome mapping reveals transcription-dependent promoter packaging. , 2010, Genome research.

[37]  Tatsuo Fukagawa,et al.  An auxin-based degron system for the rapid depletion of proteins in nonplant cells , 2009, Nature Methods.

[38]  Cizhong Jiang,et al.  A compiled and systematic reference map of nucleosome positions across the Saccharomyces cerevisiae genome , 2009, Genome Biology.

[39]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[40]  B. Cairns,et al.  The biology of chromatin remodeling complexes. , 2009, Annual review of biochemistry.

[41]  H. Madhani,et al.  Mechanisms that Specify Promoter Nucleosome Location and Identity , 2009, Cell.

[42]  Cizhong Jiang,et al.  Nucleosome positioning and gene regulation: advances through genomics , 2009, Nature Reviews Genetics.

[43]  Glòria Mas,et al.  Recruitment of a chromatin remodelling complex by the Hog1 MAP kinase to stress genes , 2009, The EMBO journal.

[44]  Fan Zhang,et al.  Structure of a RSC–nucleosome complex and insights into chromatin remodeling , 2008, Nature Structural &Molecular Biology.

[45]  Yaniv Lubling,et al.  Distinct Modes of Regulation by Chromatin Encoded through Nucleosome Positioning Signals , 2008, PLoS Comput. Biol..

[46]  N. Barkai,et al.  Two strategies for gene regulation by promoter nucleosomes. , 2008, Genome research.

[47]  Vishwanath R. Iyer,et al.  Stress-Dependent Dynamics of Global Chromatin Remodeling in Yeast: Dual Role for SWI/SNF in the Heat Shock Stress Response , 2008, Molecular and Cellular Biology.

[48]  B. Cairns,et al.  RSC regulates nucleosome positioning at Pol II genes and density at Pol III genes , 2008, The EMBO journal.

[49]  Steven J. M. Jones,et al.  Dynamic Remodeling of Individual Nucleosomes Across a Eukaryotic Genome in Response to Transcriptional Perturbation , 2007, PLoS biology.

[50]  Oliver J. Rando,et al.  Chromatin remodelling at promoters suppresses antisense transcription , 2007, Nature.

[51]  Ronald W. Davis,et al.  A high-resolution atlas of nucleosome occupancy in yeast , 2007, Nature Genetics.

[52]  M. Hattori,et al.  A large-scale full-length cDNA analysis to explore the budding yeast transcriptome , 2006, Proceedings of the National Academy of Sciences.

[53]  F. Thoma,et al.  Rapid accessibility of nucleosomal DNA in yeast on a second time scale , 2006, The EMBO journal.

[54]  J. Derisi,et al.  Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise , 2006, Nature.

[55]  E. O’Shea,et al.  Noise in protein expression scales with natural protein abundance , 2006, Nature Genetics.

[56]  Lani F. Wu,et al.  Genome-Scale Identification of Nucleosome Positions in S. cerevisiae , 2005, Science.

[57]  B. Cairns,et al.  Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair. , 2005, Genes & development.

[58]  Linhui Hao,et al.  High-throughput isolation of Saccharomyces cerevisiae RNA. , 2005, BioTechniques.

[59]  P. Meluh,et al.  The Yeast RSC Chromatin-Remodeling Complex Is Required for Kinetochore Function in Chromosome Segregation , 2003, Molecular and Cellular Biology.

[60]  Hien G. Tran,et al.  Chromatin remodeling protein Chd1 interacts with transcription elongation factors and localizes to transcribed genes , 2003, The EMBO journal.

[61]  Kevin Struhl,et al.  Genome-wide location and regulated recruitment of the RSC nucleosome-remodeling complex. , 2002, Genes & development.

[62]  I. Simon,et al.  The genome-wide localization of Rsc9, a component of the RSC chromatin-remodeling complex, changes in response to stress. , 2002, Molecular cell.

[63]  J. Palmer,et al.  Characterization of the imitation switch subfamily of ATP-dependent chromatin-remodeling factors in Saccharomyces cerevisiae. , 1999, Genes & development.

[64]  Roger D Kornberg,et al.  Histone Octamer Transfer by a Chromatin-Remodeling Complex , 1999, Cell.

[65]  M. Kladde,et al.  Sth1p, a Saccharomyces cerevisiae Snf2p/Swi2p homolog, is an essential ATPase in RSC and differs from Snf/Swi in its interactions with histones and chromatin-associated proteins. , 1998, Genetics.

[66]  D. Lohr Nucleosome Transactions on the Promoters of the YeastGAL and PHO Genes* , 1997, The Journal of Biological Chemistry.

[67]  Paul Tempst,et al.  RSC, an Essential, Abundant Chromatin-Remodeling Complex , 1996, Cell.

[68]  D. Edmondson,et al.  Chromatin and transcription , 1996, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[69]  R. Kornberg,et al.  RNA polymerase II initiation factor interactions and transcription start site selection. , 1994, Science.

[70]  C C Adams,et al.  Nucleosome displacement in transcription. , 2006, Cell.

[71]  M. Grunstein,et al.  Nucleosome loss activates yeast downstream promoters in vivo , 1988, Cell.

[72]  R. Kornberg,et al.  Nucleosomes inhibit the initiation of transcription but allow chain elongation with the displacement of histones , 1987, Cell.

[73]  R. Kornberg Chromatin structure: a repeating unit of histones and DNA. , 1974, Science.