Incremental learning for Adaptive Visual Place Recognition in Dynamic Indoor Environments

Vision-based place recognition is a desirable feature for an autonomous mobile system. In order to work in realistic scenarios, a visual recognition algorithm should have two key properties: robustness and adaptability. This thesis focuses on the latter, and presents a discriminative incremental learning approach to place recognition. We propose a solution based on incremental extensions of support vector machine classifier. Computational and memory efficiency are crucial for mobile robot platforms aiming to continuously work in real-world settings; thus we put the emphasis on these properties. We use a recently introduced memory-controlled incremental technique, which allows to control the memory requirements as the system updates its internal representation. At the same time, it preserves the recognition performance of the batch algorithm and runs online. In order to assess the method, we acquired a database capturing the intrinsic variability of places over time. Extensive experiments show the power and the potential of the approach.

[1]  Patrick Haffner,et al.  Support vector machines for histogram-based image classification , 1999, IEEE Trans. Neural Networks.

[2]  Barbara Caputo,et al.  Recognition with local features: the kernel recipe , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[3]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[4]  Ales Leonardis,et al.  Mobile robot localization using an incremental eigenspace model , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[5]  Stefan Rüping,et al.  Incremental Learning with Support Vector Machines , 2001, ICDM.

[6]  T. Lindeberg Scale-Space Theory : A Basic Tool for Analysing Structures at Different Scales , 1994 .

[7]  F. Craik,et al.  Levels of Pro-cessing: A Framework for Memory Research , 1975 .

[8]  Bernt Schiele,et al.  Object Recognition Using Multidimensional Receptive Field Histograms , 1996, ECCV.

[9]  Mark H. Lee,et al.  Error-driven active learning in growing radial basis function networks for early robot learning , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[10]  Miroslav Kubat A machine learning-based approach to load balancing in computer networks , 1992 .

[11]  Francesca Odone,et al.  Histogram intersection kernel for image classification , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[12]  A. Baddeley,et al.  The essential handbook of memory disorders for clinicians , 2004 .

[13]  Chih-Jen Lin,et al.  A comparison of methods for multiclass support vector machines , 2002, IEEE Trans. Neural Networks.

[14]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[15]  Gerhard Widmer,et al.  Learning in the Presence of Concept Drift and Hidden Contexts , 1996, Machine Learning.

[16]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[17]  Alexey Tsymbal,et al.  The problem of concept drift: definitions and related work , 2004 .

[18]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[19]  Jitendra Malik,et al.  Spectral Partitioning with Indefinite Kernels Using the Nyström Extension , 2002, ECCV.

[20]  Tom Duckett,et al.  Localization for Mobile Robots using Panoramic Vision, Local Features and Particle Filter , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[21]  Richard C. Atkinson,et al.  Human Memory: A Proposed System and its Control Processes , 1968, Psychology of Learning and Motivation.

[22]  Andreas Zell,et al.  Vision based Localization of Mobile Robots using Kernel approaches , 2005 .

[23]  Dimitrios Gunopulos,et al.  Incremental support vector machine construction , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[24]  Andrea J. van Doorn,et al.  Generic Neighborhood Operators , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  G. Bower,et al.  Reducing retroactive interference: an interference analysis. , 1994, Journal of experimental psychology. Learning, memory, and cognition.

[26]  José Santos-Victor,et al.  Vision-based navigation and environmental representations with an omnidirectional camera , 2000, IEEE Trans. Robotics Autom..

[27]  Nicholas Roy,et al.  SLAM using Incremental Probabilistic PCA and Dimensionality Reduction , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[28]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[29]  James J. Little,et al.  Vision-based mobile robot localization and mapping using scale-invariant features , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[30]  Gert Cauwenberghs,et al.  Incremental and Decremental Support Vector Machine Learning , 2000, NIPS.

[31]  Bernt Schiele,et al.  Probabilistic object recognition using multidimensional receptive field histograms , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[32]  Barbara Caputo,et al.  A Discriminative Approach to Robust Visual Place Recognition , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[33]  Emanuele Menegatti,et al.  Image-based Monte Carlo localisation with omnidirectional images , 2004, Robotics Auton. Syst..

[34]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[35]  C. Schmid,et al.  Indexing based on scale invariant interest points , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[36]  Henrik I. Christensen,et al.  Vision SLAM in the Measurement Subspace , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[37]  Tom Downs,et al.  Exact Simplification of Support Vector Solutions , 2002, J. Mach. Learn. Res..

[38]  Jason Weston,et al.  Multi-Class Support Vector Machines , 1998 .

[39]  Miroslav Kubat Floating approximation in time-varying knowledge bases , 1989, Pattern Recognit. Lett..

[40]  Tony Lindeberg,et al.  Object recognition using composed receptive field histograms of higher dimensionality , 2004, ICPR 2004.

[41]  Illah R. Nourbakhsh,et al.  Appearance-based place recognition for topological localization , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[42]  Miroslav Kubat,et al.  FAVORIT: Concept formation with ageing of knowledge , 1992, Pattern Recognit. Lett..

[43]  Gene H. Golub,et al.  Matrix computations , 1983 .

[44]  David G. Stork,et al.  Pattern classification, 2nd Edition , 2000 .

[45]  David G. Stork,et al.  Pattern Classification , 1973 .

[46]  A. Baddeley Human Memory: Theory and Practice, Revised Edition , 1990 .

[47]  Mario Fritz,et al.  On the Significance of Real-World Conditions for Material Classification , 2004, ECCV.

[48]  Peter K. Allen,et al.  Topological mobile robot localization using fast vision techniques , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[49]  Benjamin Kuipers,et al.  Adapting proposal distributions for accurate, efficient mobile robot localization , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..