Quantum Randomness as a Result of Random Fluctuations at the Planck Time Scale?

Abstract We show that the mathematical formalism of the quantum statistical model can be interpreted as a method for approximation of classical (measure-theoretic) averages on the infinite-dimensional phase space. The technique of approximation is based on the Taylor expansion of functionals of classical fields. To find the order of the deviation of quantum statistical predictions from the classical predictions, we use the time-scaling arguments. We show that quantum randomness might be considered as the result of random fluctuations at the Planck time-scale.

[1]  Gerard 't Hooft Determinism Beneath Quantum Mechanics , 2002 .

[2]  A. Barut,et al.  Foundations of radiation theory and quantum electrodynamics , 1980 .

[3]  Gerard 't Hooft Quantum Mechanics and Determinism , 2001 .

[4]  Andrei Khrennikov,et al.  Generalizations of Quantum Mechanics Induced by Classical Statistical Field Theory , 2005 .

[5]  Luis de la Peña,et al.  The quantum dice : an introduction to stochastic electrodynamics , 1996 .

[6]  P. Dirac Principles of Quantum Mechanics , 1982 .

[7]  A. Shiryaev Essentials of stochastic finance , 1999 .

[8]  M. Planck Über irreversible Strahlungsvorgänge , 1978 .

[9]  A. Khrennikov Stochastic integrals in locally convex spaces , 1982 .

[10]  Andrei Khrennikov,et al.  A pre-quantum classical statistical model with infinite-dimensional phase space , 2005, quant-ph/0505228.

[11]  Quantum mechanics as an asymptotic projection of statistical mechanics of classical fields: derivation of Schr\ , 2005, quant-ph/0511074.

[12]  W. F. Ames,et al.  Measures and Differential Equations in Infinite-Dimensional Space , 1991 .

[13]  A dynamical theory of Markovian diffusion , 1979, quant-ph/0110050.

[14]  A. Holevo Statistical structure of quantum theory , 2001 .

[15]  H. Jeffreys,et al.  The Theory of Probability , 1896 .

[16]  Albert Einstein,et al.  The collected papers of Albert Einstein , 1987 .

[17]  Timothy H. Boyer,et al.  A Brief Survey of Stochastic Electrodynamics , 1980 .

[18]  Andrei Khrennikov Nonlinear Schrödinger equations from prequantum classical statistical field theory , 2006 .

[19]  J. Neumann Mathematical Foundations of Quantum Mechanics , 1955 .

[20]  A model for the stochastic origins of Schrödinger’s equation , 1979, quant-ph/0112157.