Nonlinear perturbative electromagnetic (Darwin) particle simulation of high intensity beams
暂无分享,去创建一个
Ronald C. Davidson | Hong Qin | H. Qin | R. Davidson | W. W. Lee | W. Lee
[1] John M. Dawson,et al. A self-consistent magnetostatic particle code for numerical simulation of plasmas , 1977 .
[2] John Ambrosiano,et al. A finite element formulation of the Darwin PIC model for use on unstructured grids , 1995 .
[3] M. Rosenbluth,et al. Filamentation of a heavy‐ion beam in a reactor vessel , 1980 .
[4] Dennis W. Hewett,et al. Streamlined Darwin simulation of nonneutral plasmas , 1987 .
[5] M. Chance,et al. Anomalous transport due to shear Alfven waves , 1981 .
[6] D. Hammer,et al. Nonlinear Development of Electromagnetic Instabilities in Anisotropic Plasmas , 1972 .
[7] R. Littlejohn. Linear relativistic gyrokinetic equation , 1984 .
[8] Ronald C. Davidson,et al. 3D Multispecies Nonlinear Perturbative Particle Simulations of Collective Processes in Intense Particle Beams , 2001 .
[9] C. Darwin,et al. LI. The dynamical motions of charged particles , 1920 .
[10] R. Davidson,et al. Stability and transport properties of an intense ion beam propagating through an alternating-gradient focusing lattice , 1996 .
[11] M. S. Chance,et al. Hamiltonian guiding center drift orbit calculation for plasmas of arbitrary cross section , 1984 .
[12] S. Parker,et al. A fully nonlinear characteristic method for gyrokinetic simulation , 1993 .
[13] Alain J. Brizard,et al. Nonlinear gyrokinetic theory for finite‐beta plasmas , 1988 .