Crystal structures of the E. coli transcription initiation complexes with a complete bubble.

[1]  T. Steitz,et al.  Structural basis for transcription reactivation by RapA , 2015, Proceedings of the National Academy of Sciences.

[2]  Brian D Sharon,et al.  Bacterial sigma factors: a historical, structural, and genomic perspective. , 2014, Annual review of microbiology.

[3]  K. Murakami,et al.  Structural Basis of Transcription Initiation by Bacterial RNA Polymerase Holoenzyme* , 2014, The Journal of Biological Chemistry.

[4]  R. Ebright,et al.  GE23077 binds to the RNA polymerase ‘i’ and ‘i+1’ sites and prevents the binding of initiating nucleotides , 2014, eLife.

[5]  A. Ishihama,et al.  The Whole Set of Constitutive Promoters Recognized by RNA Polymerase RpoD Holoenzyme of Escherichia coli , 2014, PloS one.

[6]  J. Vorholt,et al.  Structural basis for −10 promoter element melting by environmentally induced sigma factors , 2014, Nature Structural &Molecular Biology.

[7]  A. Kulbachinskiy,et al.  Distinct functions of the RNA polymerase σ subunit region 3.2 in RNA priming and promoter escape , 2014, Nucleic acids research.

[8]  S. Darst,et al.  Phage T7 Gp2 inhibition of Escherichia coli RNA polymerase involves misappropriation of σ70 domain 1.1 , 2013, Proceedings of the National Academy of Sciences.

[9]  Craig T Martin,et al.  Insights into the Mechanism of Initial Transcription in Escherichia coli RNA Polymerase* , 2013, The Journal of Biological Chemistry.

[10]  T. Steitz,et al.  The mechanism of E. coli RNA polymerase regulation by ppGpp is suggested by the structure of their complex. , 2013, Molecular cell.

[11]  S. Sainsbury,et al.  Structure and function of the initially transcribing RNA polymerase II–TFIIB complex , 2012, Nature.

[12]  R. Ebright,et al.  Structural Basis of Transcription Initiation , 2012, Science.

[13]  S. Darst,et al.  Structural Basis for Promoter −10 Element Recognition by the Bacterial RNA Polymerase σ Subunit , 2011, Cell.

[14]  P. Dehaseth,et al.  Mechanism of bacterial transcription initiation: RNA polymerase - promoter binding, isomerization to initiation-competent open complexes, and initiation of RNA synthesis. , 2011, Journal of molecular biology.

[15]  X. Huang,et al.  Initiation Complex Structure and Promoter Proofreading , 2011, Science.

[16]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[17]  N. Pannu,et al.  REFMAC5 for the refinement of macromolecular crystal structures , 2011, Acta crystallographica. Section D, Biological crystallography.

[18]  R. Ebright,et al.  Direct Detection of Abortive RNA Transcripts in Vivo , 2009, Science.

[19]  India G. Hook-Barnard,et al.  Transcription Initiation by Mix and Match Elements: Flexibility for Polymerase Binding to Bacterial Promoters , 2007, Gene regulation and systems biology.

[20]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[21]  Tahir H. Tahirov,et al.  Structural basis for transcription elongation by bacterial RNA polymerase , 2007, Nature.

[22]  Nick V Grishin,et al.  Structural basis for converting a general transcription factor into an operon-specific virulence regulator. , 2007, Molecular cell.

[23]  Shimon Weiss,et al.  Initial Transcription by RNA Polymerase Proceeds Through a DNA-Scrunching Mechanism , 2006, Science.

[24]  Terence R. Strick,et al.  Abortive Initiation and Productive Initiation by RNA Polymerase Involve DNA Scrunching , 2006, Science.

[25]  A. Mustaev,et al.  Region 3.2 of the σ Subunit Contributes to the Binding of the 3′-Initiating Nucleotide in the RNA Polymerase Active Center and Facilitates Promoter Clearance during Initiation* , 2006, Journal of Biological Chemistry.

[26]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[27]  K. Severinov,et al.  The role of RNA polymerase σ subunit in promoter-independent initiation of transcription , 2004 .

[28]  K. Severinov,et al.  The role of RNA polymerase sigma subunit in promoter-independent initiation of transcription. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[29]  M. Cashel,et al.  Changes in Conserved Region 3 of Escherichia coliς70 Reduce Abortive Transcription and Enhance Promoter Escape* , 2003, The Journal of Biological Chemistry.

[30]  D. Jin,et al.  Escherichia coli proteins eluted from mono Q chromatography, a final step during RNA polymerase purification procedure. , 2003, Methods in enzymology.

[31]  T. Muir,et al.  Autoregulation of a bacterial σ factor explored by using segmental isotopic labeling and NMR , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[32]  K. Murakami,et al.  Structural Basis of Transcription Initiation: RNA Polymerase Holoenzyme at 4 Å Resolution , 2002, Science.

[33]  K. Murakami,et al.  Structural Basis of Transcription Initiation: An RNA Polymerase Holoenzyme-DNA Complex , 2002, Science.

[34]  Jennifer L. Knight,et al.  Structural Organization of Bacterial RNA Polymerase Holoenzyme and the RNA Polymerase-Promoter Open Complex , 2002, Cell.

[35]  S. Darst,et al.  Structure of the Bacterial RNA Polymerase Promoter Specificity σ Subunit , 2002 .

[36]  S. Darst,et al.  Structure of the bacterial RNA polymerase promoter specificity sigma subunit. , 2002, Molecular cell.

[37]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[38]  T. Muir,et al.  Autoregulation of a bacterial sigma factor explored by using segmental isotopic labeling and NMR. , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[39]  J. Gralla,et al.  Promoter opening via a DNA fork junction binding activity. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[41]  N. Shimamoto,et al.  Requirement for the beta,gamma-pyrophosphate bond of ATP in a stage between transcription initiation and elongation by Escherichia coli RNA polymerase. , 1991, Biochemistry.

[42]  M. Rosenberg,et al.  Constitutive function of a positively regulated promoter reveals new sequences essential for activity. , 1987, The Journal of biological chemistry.

[43]  C. Harley,et al.  Analysis of E. coli promoter sequences. , 1987, Nucleic acids research.

[44]  D. Crothers,et al.  A stressed intermediate in the formation of stably initiated RNA chains at the Escherichia coli lac UV5 promoter. , 1987, Journal of molecular biology.

[45]  W R McClure,et al.  Role of the sigma subunit of Escherichia coli RNA polymerase in initiation. II. Release of sigma from ternary complexes. , 1980, The Journal of biological chemistry.

[46]  U. Hansen,et al.  A noncycling activity assay for the omega subunit of Escherichia coli RNA polymerase. , 1979, The Journal of biological chemistry.