Interpolation with interval and point tension controls using cubic weighted v-splines

Various methods have been developed to control the shape of an interpolating curve for computer-aided design applications. Some methods are better suited for controlling the tension of the curve on an interval, while others are better suited for controlling the tension at the individual interpolation points. The weighted <italic>v</italic>-spline is a C<supscrpt>1</supscrpt> piecewise cubic polynomial interpolant that generalizes C<supscrpt>2</supscrpt> cubic splines, weighted splines, and <italic>v</italic>-splines. Shape controls are available to “tighten” the weighted <italic>v</italic>-spline on intervals and/or at the interpolation points. The mathematical theory is presented together with short algorithms for parametric interpolation.

[1]  D. Schweikert An Interpolation Curve Using a Spline in Tension , 1966 .

[2]  J. L. Walsh,et al.  The theory of splines and their applications , 1969 .

[3]  W. J. Gordon,et al.  B-SPLINE CURVES AND SURFACES , 1974 .

[4]  G. Nielson SOME PIECEWISE POLYNOMIAL ALTERNATIVES TO SPLINES UNDER TENSION , 1974 .

[5]  Samuel D. Conte,et al.  Elementary Numerical Analysis: An Algorithmic Approach , 1975 .

[6]  M. Epstein On the Influence of Parametrization in Parametric Interpolation , 1976 .

[7]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[8]  I. Faux,et al.  Computational Geometry for Design and Manufacture , 1979 .

[9]  Samuel D. Conte,et al.  Elementary Numerical Analysis , 1980 .

[10]  R. E. Carlson,et al.  Monotone Piecewise Cubic Interpolation , 1980 .

[11]  Brian A. Barsky,et al.  TRANSPLINE - A System for Representing Curves Using Transformations Among four Spline Formulations , 1981, Comput. J..

[12]  M. Healey The Possible Impact of Minicomputers and Microprocessors on Mainframe Computer Manufacturers , 1981, Comput. J..

[13]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[14]  James D. Foley,et al.  Fundamentals of interactive computer graphics , 1982 .

[15]  Berthold K. P. Horn The Curve of Least Energy , 1983, TOMS.

[16]  Brian A. Barsky,et al.  Local Control of Bias and Tension in Beta-splines , 1983, TOGS.

[17]  R. L. Carmichael A collection of procedures for defining airplane surfaces for input to PANAIR , 1984 .

[18]  Brian A. Barsky Exponential and polynomial methods for applying tension to an interpolating spline curve , 1984, Comput. Vis. Graph. Image Process..

[19]  S. Marin An Approach to Data Parametrization in Parametric Cubic Spline Interpolation Problems , 1984 .

[20]  Richard H. Bartels,et al.  Interpolating splines with local tension, continuity, and bias control , 1984, SIGGRAPH.

[21]  K. Salkauskas $C^1$ >splines for interpolation of rapidly varying data , 1984 .

[22]  Gerald E. Farin Some remarks on V2-splines , 1985, Comput. Aided Geom. Des..

[23]  B. Barsky,et al.  An Intuitive Approach to Geometric Continuity for Parametric Curves and Surfaces (Extended Abstract) , 1985 .

[24]  Gregory M. Nielson,et al.  Rectangular v-Splines , 1986, IEEE Computer Graphics and Applications.

[25]  Thomas A. Foley,et al.  Local control of interval tension using weighted splines , 1986, Comput. Aided Geom. Des..