Existence and decay of solutions of a viscoelastic equation with a nonlinear source

Abstract In a bounded domain, we consider u tt - Δ u + ∫ 0 t g ( t - τ ) Δ u d τ = | u | γ u , where γ > 0 , and g is a nonnegative and decaying function. We prove a local existence theorem and show, for certain initial data and suitable conditions on g and γ , that this solution is global with energy which decays exponentially or polynomially depending on the rate of the decay of the relaxation function g .

[1]  Gerd Grubb,et al.  PROBLÉMES AUX LIMITES NON HOMOGÉNES ET APPLICATIONS , 1969 .

[2]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[3]  E. Zuazua,et al.  Decay estimates for some semilinear damped hyperbolic problems , 1988 .

[4]  Abbes Benaissa,et al.  Exponential decay of solutions of a nonlinearly damped wave equation , 2005 .

[5]  Marcelo M. Cavalcanti,et al.  Existence and uniform decay for a non‐linear viscoelastic equation with strong damping , 2001 .

[6]  Mitsuhiro Nakao,et al.  Decay of solutions of some nonlinear evolution equations , 1977 .

[7]  Mitsuhiro Nakao,et al.  Remarks on the existence and uniqueness of global decaying solutions of the nonlinear dissipative wave equations , 1991 .

[8]  R. Ikehata Improved decay rates for solutions to one-dimensional linear and semilinear dissipative wave equations in all space , 2003 .

[9]  Nasser-eddine Tatar,et al.  A memory type boundary stabilization of a mildly damped wave equation , 1999 .

[10]  M. Kopáčková Remarks on bounded solutions of a semilinear dissipative hyperbolic equation , 1989 .

[11]  S. Messaoudi,et al.  Exponential decay of solutions to a viscoelastic equation with nonlinear localized damping. , 2004 .

[12]  R. Ikehata Local energy decay for linear wave equations with non‐compactly supported initial data , 2004 .

[13]  J. Rivera,et al.  Decay rates for viscoelastic plates with memory , 1996 .

[14]  Marcelo M. Cavalcanti,et al.  Existence and uniform decay rates for viscoelastic problems with nonlinear boundary damping , 2001, Differential and Integral Equations.

[15]  Ryo Ikehata,et al.  New decay estimates for linear damped wave equations and its application to nonlinear problem , 2004 .

[16]  E. Boschi Recensioni: J. L. Lions - Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Gauthier-Vi;;ars, Paris, 1969; , 1971 .

[17]  Marcelo Moreira Cavalcanti,et al.  Frictional versus Viscoelastic Damping in a Semilinear Wave Equation , 2003, SIAM J. Control. Optim..

[18]  G. Milton,et al.  Optimal G-Closure Bounds¶via Stability under Lamination , 1999 .

[19]  Vladimir Georgiev,et al.  Existence of a Solution of the Wave Equation with Nonlinear Damping and Source Terms , 1994 .

[20]  J. A. Soriano,et al.  Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping , 2002 .

[21]  S. Kawashima,et al.  Global solutions to the equation of thermoelasticity with fading memory , 1993 .