The modelling of electrostatic interactions in the function of globular proteins.

[1]  S. Singer The Properties of Proteins in Nonaqueous Solvents , 1963 .

[2]  Brian E. Conway,et al.  The dielectric constant of the solution in the diffuse and Helmholtz double layers at a charged interface in aqueous solution , 1951 .

[3]  R. Kassner,et al.  A theoretical model for the effects of local nonpolar heme environments on the redox potentials in cytochromes. , 1973, Journal of the American Chemical Society.

[4]  J. Warwicker,et al.  Calculation of the electric potential in the active site cleft due to alpha-helix dipoles. , 1982, Journal of molecular biology.

[5]  B. Linder,et al.  Model of serine proteases charge relay system -- PCILO study. , 1981, Biophysical chemistry.

[6]  C. Tanford,et al.  Interpretation of protein titration curves. Application to lysozyme. , 1972, Biochemistry.

[7]  G. Hortin,et al.  Markers for processing sites in eukaryotic proteins: Characterization with amino acid analogs , 1983 .

[8]  S. Friend,et al.  Electrostatic stabilization in myoglobin. Interactive free energies between individual sites. , 1979, Biochemistry.

[9]  M. Mathew,et al.  A helix dipole model for alamethicin and related transmembrane channels , 1983 .

[10]  F. Richards,et al.  Differential electrostatic stabilization of A‐, B‐, and Z‐forms of DNA , 1984, Biopolymers.

[11]  F. Quiocho,et al.  Sulphate sequestered in the sulphate-binding protein of Salmonella typhimurium is bound solely by hydrogen bonds , 1985, Nature.

[12]  M. Perutz Electrostatic effects in proteins. , 1978, Science.

[13]  G. N. Ramachandran,et al.  Conformation of polypeptides and proteins. , 1968, Advances in protein chemistry.

[14]  Michael J. E. Sternberg,et al.  Regular representation of irregular charge distributions , 1984 .

[15]  F. Richards,et al.  The pH dependence of hydrogen exchange in proteins. , 1983, The Journal of biological chemistry.

[16]  Theoretical calculations on proton-transfer energetics: studies of methanol, imidazole, formic acid, and methaneethiol as models for the serine and cysteine proteases , 1981 .

[17]  F S Mathews,et al.  The structure, function and evolution of cytochromes. , 1985, Progress in biophysics and molecular biology.

[18]  Converting structural changes upon oxidation of cytochrome c to electrostatic reorganization energy. , 1983, Journal of molecular biology.

[19]  G. Náray‐Szabó QUANTUM CHEMICAL CALCULATION OF THE ENZYME-LIGAND INTERACTION ENERGY FOR TRYPSIN INHIBITION BY BENZAMIDINES. , 1984 .

[20]  D. Edmonds The α-helix dipole in membranes: a new gating mechanism for ion channels , 2004, European Biophysics Journal.

[21]  H. Berendsen,et al.  The α-helix dipole and the properties of proteins , 1978, Nature.

[22]  R. J. Williams,et al.  pH dependence of the redox potential of Pseudomonas aeruginosa cytochrome c-551. , 1980, Biochimica et biophysica acta.

[23]  J. D'Angelo,et al.  Finite element computation of three-dimensional electrostatic and magnetostatic field problems , 1983 .

[24]  F. Gurd,et al.  pH-dependent processes in proteins. , 1985, CRC critical reviews in biochemistry.

[25]  Robert J.P. Williams,et al.  Electrostatics and biological systems , 1985 .

[26]  J. Kirkwood,et al.  The Electrostatic Influence of Substituents on the Dissociation Constants of Organic Acids. II , 1938 .

[27]  C. Paul,et al.  Building models of globular protein molecules from their amino acid sequences. I. Theory. , 1982, Journal of molecular biology.

[28]  P. Argos Protein structural models for nucleic acid interactions. , 1981, Journal of theoretical biology.

[29]  S. Friend,et al.  Electrostatic stabilization in sperm whale and harbor seal myoglobins. Identification of groups primarily responsible for changes in anchoring of the A helix. , 1980, Biophysical journal.

[30]  Arieh Warshel,et al.  An empirical valence bond approach for comparing reactions in solutions and in enzymes , 1980 .

[31]  R. Sheridan,et al.  The effect of deuterium substitution on hydrogen bonds in redox proteins. , 1984, Biopolymers.

[32]  M J Sternberg,et al.  Electrostatic interactions in globular proteins. Different dielectric models applied to the packing of alpha-helices. , 1984, Journal of molecular biology.

[33]  B. Honig,et al.  On the calculation of electrostatic interactions in proteins. , 1985, Journal of molecular biology.

[34]  J. D. Morgan,et al.  Molecular dynamics of ferrocytochrome c. Magnitude and anisotropy of atomic displacements. , 1981, Journal of molecular biology.

[35]  M Karplus,et al.  Picosecond dynamics of tyrosine side chains in proteins. , 1979, Biochemistry.

[36]  Harold L. Friedman,et al.  Image approximation to the reaction field , 1975 .

[37]  L. Krishtalik The negative cooperativity in cytochrome c oxidase redox reactions: the electrostatic effect. , 1985, Archives of biochemistry and biophysics.

[38]  F R Salemme,et al.  An hypothetical structure for an intermolecular electron transfer complex of cytochromes c and b5. , 1976, Journal of molecular biology.

[39]  A. Schejter,et al.  Stepwise modification of the electrostatic charge of cytochrome c. Effects on protein conformation and oxidation-reduction properties. , 1981, The Journal of biological chemistry.

[40]  S. Friend,et al.  Electrostatic effects in hemoglobin: electrostatic energy associated with allosteric transition and effector binding. , 1981, Biochemistry.

[41]  G. Eichele,et al.  Electrostatic effects in water-accessible regions of proteins , 1984 .

[42]  A. Hopfinger,et al.  Theoretical conformation of proline oligomers , 1969 .

[43]  P. Terpstra,et al.  Prediction of the Occurrence of the ADP-binding βαβ-fold in Proteins, Using an Amino Acid Sequence Fingerprint , 1986 .

[44]  M. Karplus,et al.  Effect of constraints, solvent and crystal environment on protein dynamics , 1981, Nature.

[45]  David Eisenberg,et al.  The helical hydrophobic moment: a measure of the amphiphilicity of a helix , 1982, Nature.

[46]  P. Kollman,et al.  Analysis of the pharmacological properties of clozapine analogues using molecular electrostatic potential surfaces , 1986 .

[47]  J Greer,et al.  Model of a specific interaction. Salt-bridges form between prothrombin and its activating enzyme blood clotting factor Xa. , 1981, Journal of molecular biology.

[48]  B. Robson The design of biologically active polypeptides. , 1983, CRC critical reviews in biochemistry.

[49]  Nivedita Borkakoti,et al.  Solvent-induced distortions and the curvature of α-helices , 1983, Nature.

[50]  H. Umeyama,et al.  Electrostatic forces in the inhibition of dihydrofolate reductase by methotrexate. A field potential study. , 1984, Chemical & pharmaceutical bulletin.

[51]  J. V. Bannister,et al.  Chemical aspects of the structure, function and evolution of superoxide dismutases , 1983 .

[52]  R. Wierenga,et al.  INTERACTION OF PYROPHOSPHATE MOIETIES WITH ALPHA-HELIXES IN DINUCLEOTIDE BINDING-PROTEINS , 1985 .

[53]  Frederic M. Richards,et al.  A voltage-gated ion channel model inferred from the crystal structure of alamethicin at 1.5-Å resolution , 1982, Nature.

[54]  T. L. Hill,et al.  Influence of Electrolyte on effective Dielectric constants in Enzymes, proteins and other molecules , 1956 .

[55]  T. Steitz,et al.  Crystallographic studies of protein-nucleic acid interaction: catabolite gene activator protein and the large fragment of DNA polymerase I. , 1983, Journal of biomolecular structure & dynamics.

[56]  R. Pethig,et al.  Dielectric studies of the binding of water to lysozyme. , 1982, Journal of molecular biology.

[57]  H. Berendsen,et al.  Inclusion of reaction fields in molecular dynamics. Application to liquid water , 1978 .

[58]  Ronald Pethig,et al.  Dielectric and electronic properties of biological materials , 1979 .

[59]  J. Greer Comparative model-building of the mammalian serine proteases. , 1981, Journal of molecular biology.

[60]  Jacopo Tomasi,et al.  Electronic Molecular Structure, Reactivity and Intermolecular Forces: An Euristic Interpretation by Means of Electrostatic Molecular Potentials , 1978 .

[61]  G. Jameson,et al.  Role of weak hydrogen bonding in the coordination of dioxygen to hemoproteins and their models , 1985 .

[62]  Barry Honig,et al.  Reevaluation of the Born model of ion hydration , 1985 .

[63]  M. Perutz,et al.  Structure of Hæmoglobin: A Three-Dimensional Fourier Synthesis at 5.5-Å. Resolution, Obtained by X-Ray Analysis , 1960, Nature.

[64]  P A Kollman,et al.  Electrostatic potentials of proteins. 2. Role of electrostatics in a possible catalytic mechanism for carboxypeptidase A. , 1976, Journal of the American Chemical Society.

[65]  P. Kowalczyk,et al.  Interactions of molecules with nucleic acids. IX. Evaluation and presentation of electrostatic contours on a steric surface with the removal of hidden lines , 1984 .

[66]  Haruki Nakamura,et al.  Visualization of electrostatic recognition by enzymes for their ligands and cofactors , 1985 .

[67]  J. Kirkwood The Dielectric Polarization of Polar Liquids , 1939 .

[68]  S. Friend,et al.  Charge-site communication in proteins: electrostatic heme linkage of azide binding by sperm whale myoglobin. , 1980, Biochemistry.

[69]  T. Creighton,et al.  Effect on protein stability of reversing the charge on amino groups. , 1982, Biochimica et biophysica acta.

[70]  B. Hedlund,et al.  Electrostatic modification of protein surfaces: effect on hemoglobin ligation and solubility. , 1984, Biochemistry.

[71]  Peter A. Kollman,et al.  Molecular mechanics simulation of protein-ligand interactions: binding of thyroid hormone analogs to prealbumin , 1982 .

[72]  L. Onsager Electric Moments of Molecules in Liquids , 1936 .

[73]  T. Goldkorn,et al.  The redox potential of cytochrome c-552 from Euglena gracillis: a thermodynamic study. , 1976, Archives of biochemistry and biophysics.

[74]  A. Warshel,et al.  Calculations of electrostatic energies in proteins. The energetics of ionized groups in bovine pancreatic trypsin inhibitor. , 1985, Journal of molecular biology.

[75]  Peter A. Kollman,et al.  Electrostatic recognition between superoxide and copper, zinc superoxide dismutase , 1983, Nature.

[76]  P. Y. Chou,et al.  Conformational parameters for amino acids in helical, beta-sheet, and random coil regions calculated from proteins. , 1974, Biochemistry.

[77]  E. Stellwagen Haem exposure as the determinate of oxidation–reduction potential of haem proteins , 1978, Nature.

[78]  S. Hirono,et al.  Electrostatic potential images of drugs targetting dopamine receptors. , 1984, Chemical & pharmaceutical bulletin.

[79]  Shaw Pb Theory of the Poisson Green's function for discontinuous dielectric media with an application to protein biophysics. , 1985 .

[80]  J. Ángyán,et al.  Comparison of protein electrostatic potential along the catalytic triad of serine proteinases. , 1983, Journal of theoretical biology.

[81]  N. V. Kumar,et al.  Theoretical studies on protein–nucleic acid interactions. I. Interaction of positively charged amino acids with nucleic acid fragments , 1984, Biopolymers.

[82]  T Imoto,et al.  Electrostatic free energy of lysozyme. , 1983, Biophysical journal.

[83]  E. Margoliash,et al.  Definition of cytochrome c binding domains by chemical modification. III. Kinetics of reaction of carboxydinitrophenyl cytochromes c with cytochrome c oxidase. , 1978, The Journal of biological chemistry.

[84]  M. Sternberg,et al.  Electrostatic interactions in globular proteins: calculation of the pH dependence of the redox potential of cytochrome c551. , 1985, Journal of molecular biology.

[85]  D. Rees Experimental evaluation of the effective dielectric constant of proteins. , 1980, Journal of molecular biology.

[86]  D. Phillips,et al.  Crystallographic studies of the dynamic properties of lysozyme , 1979, Nature.

[87]  M Levitt Protein conformation, dynamics, and folding by computer simulation. , 1982, Annual review of biophysics and bioengineering.

[88]  G. Moore Control of redox properties of cytochrome c by special electrostatic interactions , 1983, FEBS letters.

[89]  Norman L. Allinger,et al.  Treatment of electrostatic effects within the molecular-mechanics method. 2 , 1983 .

[90]  H. Mckenzie,et al.  Water and proteins. II. The location and dynamics of water in protein systems and its relation to their stability and properties. , 1983, Advances in biophysics.

[91]  J Deisenhofer,et al.  Structure of the complex formed by bovine trypsin and bovine pancreatic trypsin inhibitor. II. Crystallographic refinement at 1.9 A resolution. , 1974, Journal of molecular biology.

[92]  J. Karn,et al.  Periodic charge distributions in the myosin rod amino acid sequence match cross-bridge spacings in muscle , 1982, Nature.

[93]  M. Born Volumen und Hydratationswärme der Ionen , 1920 .

[94]  W. Bishop Local effects in hydrophobicity. Electrostatic interactions in the restructuring of highly polar solvent around less polar solute. , 1983, Biophysical chemistry.

[95]  C. Tanford,et al.  Theory of Protein Titration Curves. I. General Equations for Impenetrable Spheres , 1957 .

[96]  G. Bossis Real dipolar moment associated with an ellipsoidal polar molecule and the static dielectric constant of mixtures of polar and non-polar liquids , 1982 .

[97]  R. Gruener,et al.  Effects of halothane on the acetylcholine receptor channel in cultured Xenopus myocytes. , 1984, Biophysical journal.

[98]  M. Karplus,et al.  Protein dynamics in solution and in a crystalline environment: a molecular dynamics study. , 1982, Biochemistry.

[99]  F. Bellemare,et al.  Toward a multistep mechanism of cytochrome c reactivity. Answer to a comment. , 1983, Biophysical chemistry.

[100]  G. Moore,et al.  The influence of electrostatic interactions between buried charges on the properties of membrane proteins. , 1985, Journal of inorganic biochemistry.

[101]  D. D. Yue,et al.  Theory of Electric Polarization , 1974 .

[102]  H. Scheraga,et al.  Energy parameters in polypeptides. VII. Geometric parameters, partial atomic charges, nonbonded interactions, hydrogen bond interactions, and intrinsic torsional potentials for the naturally occurring amino acids , 1975 .

[103]  F. Richards,et al.  Electrostatic orientation during electron transfer between flavodoxin and cytochrome c , 1983, Nature.

[104]  F. Richards,et al.  Anion binding and pH-dependent electrostatic effects in ribonuclease. , 1982, Biochemistry.

[105]  M. Sternberg,et al.  Modelling the ATP‐binding site of oncogene products, the epidermal growth factor receptor and related proteins , 1984, FEBS letters.

[106]  W G Hol,et al.  On the role of the active site helix in papain, an ab initio molecular orbital study. , 1979, Biophysical chemistry.

[107]  P. Flory,et al.  Conformational energy estimates for statistically coiling polypeptide chains , 1967 .

[108]  R. Zauhar,et al.  A new method for computing the macromolecular electric potential. , 1985, Journal of molecular biology.

[109]  T. Steitz,et al.  Model of specific complex between catabolite gene activator protein and B-DNA suggested by electrostatic complementarity. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[110]  Haruki Nakamura,et al.  Nature of the charge distribution in proteins , 1981, Nature.

[111]  Cooperative motion and hydrogen exchange stability in protein β-sheets , 1982, Nature.

[112]  F. Gurd,et al.  Electrostatic effects in myoglobin. Hydrogen ion equilibria in sperm whale ferrimyoglobin. , 1974, Biochemistry.

[113]  R. Langridge,et al.  Molecular‐mechanical studies of hormone–protein interactions: The interaction of T4 and T3 with prealbumin , 1984, Biopolymers.

[114]  J. M. Pratt,et al.  Protein‐free models for the proton‐coupled reduction of haemoproteins , 1984, FEBS letters.

[115]  W. Hol Effects of the α-helix dipole upon the functioning and structure of proteins and peptides , 1985 .

[116]  A. Warshel,et al.  Calculations of electrostatic interactions in biological systems and in solutions , 1984, Quarterly Reviews of Biophysics.

[117]  J. Voet,et al.  Electrostatic control of enzyme reactions: effect of ionic strength on the pKa of an essential acidic group on glucose oxidase. , 1981, Biochemistry.

[118]  D. A. Cook,et al.  The relation between amino acid sequence and protein conformation. , 1967, Journal of molecular biology.

[119]  F. Richards,et al.  Electrostatic field of the large fragment of Escherichia coli DNA polymerase I. , 1985, Journal of molecular biology.

[120]  P. Lorrain,et al.  Electromagnetic fields and waves , 1970 .

[121]  R. J. Abraham,et al.  Electrostatic potentials of the alpha helix dipole and of elastase , 1986 .

[122]  W. Koppenol Is cytochrome c reactivity determined by dipole moment or by local charges? , 1983, Biophysical chemistry.

[123]  P A Kollman,et al.  Electrostatic potentials of proteins. 1. Carboxypeptidase A. , 1976, Journal of the American Chemical Society.

[124]  O. Ptitsyn,et al.  Statistical analysis of the distribution of amino acid residues among helical and non-helical regions in globular proteins. , 1969, Journal of molecular biology.

[125]  A. Warshel Electrostatic basis of structure-function correlation in proteins , 1981 .

[126]  D. Phillips,et al.  The three-dimensional structure of an enzyme molecule. , 1966, Scientific American.

[127]  J. Lowy,et al.  Application of potential energy calculations to the determination of muscle structure from X-ray data with special reference to the configuration of myosin heads. , 1984, Journal of molecular biology.

[128]  D. Peters,et al.  A simple and novel interpretation of the three‐dimensional structure of globular proteins based on quantum‐mechanical computations on small model molecules. I , 1985, Biopolymers.

[129]  Arieh Warshel,et al.  On the action of cytochrome c: correlating geometry changes upon oxidation with activation energies of electron transfer , 1983 .

[130]  P. Goodford A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. , 1985, Journal of medicinal chemistry.

[131]  Peter A. Kollman,et al.  Molecular mechanics studies of enzyme-substrate interactions: the interaction of L- and D-N-acetyltryptophanamide with α-chymotrypsin , 1983 .

[132]  S. Friend,et al.  Protein-protein interactions: nature of the electrostatic stabilization of deoxyhemoglobin tetramer formation. , 1981, Biochemistry.

[133]  E. Clementi,et al.  Intermolecular pontentials: Interaction of water with lysozyme , 1977 .

[134]  Tom Blundell,et al.  The active site of aspartic proteinases , 1991, FEBS letters.

[135]  Othmar Steinhauser,et al.  Reaction field simulation of water , 1982 .

[136]  Michael G. Motto,et al.  An external point-charge model for wavelength regulation in visual pigments , 1979 .

[137]  S. Ehrenson Solvent dielectric attenuation of substituent effects. Dependence on boundary representation in prolate spheroidal cavity models , 1984 .

[138]  G. Náray‐Szabó Electrostatic isopotential maps for large biomolecules , 1979 .

[139]  I. Tanaka,et al.  3-Å resolution structure of a protein with histone-like properties in prokaryotes , 1984, Nature.

[140]  M. Levitt,et al.  Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. , 1976, Journal of molecular biology.

[141]  B. Matthews,et al.  Intrahelical hydrogen bonding of serine, threonine and cysteine residues within alpha-helices and its relevance to membrane-bound proteins. , 1984, Journal of molecular biology.

[142]  B. Matthews,et al.  Proposed α-helical super-secondary structure associated with protein-DNA recognition , 1982 .

[143]  J. Gersten,et al.  Generalization of the Born equation to nonspherical solvent cavities , 1985 .

[144]  T. Meyer,et al.  Redox potentials of the photosynthetic bacterial cytochromes c2 and the structural bases for variability. , 1978, Biochimica et biophysica acta.

[145]  M. Ptak,et al.  Interactions between Asp, His, Ser residues within models of the active site of serine proteases. A theoretical empirical study. , 2009, International journal of peptide and protein research.

[146]  O. Berg,et al.  How do genome-regulatory proteins locate their DNA target sites? , 1982 .

[147]  R. Sheridan,et al.  The electrostatic potential of the alpha helix (electrostatic potential/alpha-helix/secondary structure/helix dipole). , 1980, Biophysical chemistry.

[148]  P. Dean,et al.  Statistical method for surface pattern-making between dissimilar molecules: electrostatic potentials and accessible surfaces , 1986 .

[149]  W. Koppenol,et al.  The electric potential field around cytochrome c and the effect of ionic strength on reaction rates of horse cytochrome c. , 1978, Biochimica et biophysica acta.

[150]  William R. Taylor,et al.  An ellipsoidal approximation of protein shape , 1983 .

[151]  Wim G. J. Hol,et al.  Predicted nucleotide-binding properties of p21 protein and its cancer-associated variant , 1983, Nature.

[152]  G. Tollin,et al.  Electrostatic interactions during electron transfer reactions between c-type cytochromes and flavodoxin. , 1985, The Journal of biological chemistry.

[153]  D. F. Koenig,et al.  Structure of Hen Egg-White Lysozyme: A Three-dimensional Fourier Synthesis at 2 Å Resolution , 1965, Nature.

[154]  A. Gronenborn,et al.  The pKa values of two histidine residues in human haemoglobin, the Bohr effect, and the dipole moments of alpha-helices. , 1985, Journal of molecular biology.

[155]  Wim G. J. Hol,et al.  The role of the α-helix dipole in protein function and structure , 1985 .

[156]  H. Bunn,et al.  Electrostatic interactions in the assembly of haemoglobin , 1983, Nature.

[157]  Wim G. J. Hol,et al.  Dipoles of the α-helix and β-sheet: their role in protein folding , 1981, Nature.

[158]  Gita Subba Rao,et al.  Calculation of the minimum energy conformation of biomolecules using a global optimization technique I. Methodology and application to a model molecular fragment (Normal pentane) , 1981 .

[159]  K. J. Miller,et al.  Interactions of molecules with nucleic acids. XII. Theoretical model for the interaction of a fragment of bleomycin with DNA , 1985, Biopolymers.

[160]  Michael L. Connolly,et al.  Molecular surface Triangulation , 1985 .

[161]  Computation of peptide-protein interactions. Catalysis by chymotrypsin: prediction of relative substrate reactivities , 1981 .

[162]  J. André,et al.  Dipole–dipole interaction and the relative stability of different types of aggregates of helical polypeptides , 1978 .

[163]  C Chothia,et al.  Stability and specificity of protein-protein interactions: the case of the trypsin-trypsin inhibitor complexes. , 1976, Journal of molecular biology.

[164]  G. Moore,et al.  Structural basis for the variation of pH-dependent redox potentials of Pseudomonas cytochromes c-551. , 1984, Biochemistry.

[165]  R. Sheridan,et al.  The active site electrostatic potential of human carbonic anhydrase , 1981 .

[166]  Y. K. Levine,et al.  A model for the calculation of the dielectric dispersion and the dipole moment of globular proteins in solution. , 1982, Biophysical chemistry.

[167]  E. Margoliash,et al.  Guided by electrostatics, a textbook protein comes of age , 1983 .

[168]  Georg E. Schulz,et al.  Principles of Protein Structure , 1979 .

[169]  E. Margoliash,et al.  The asymmetric distribution of charges on the surface of horse cytochrome c. Functional implications. , 1982, The Journal of biological chemistry.

[170]  F. Bellemare,et al.  Dielectric constant dependence of biological oxidation-reduction. 1. A model of polarity-dependent ferrocytochrome c oxidation. , 1982, Biophysical chemistry.

[171]  R. G. Hart,et al.  Structure of Myoglobin: A Three-Dimensional Fourier Synthesis at 2 Å. Resolution , 1960, Nature.

[172]  S. Friend,et al.  Electrostatic stabilization in myoglobin. pH dependence of summed electrostatic contributions. , 1979, Biochemistry.

[173]  A. J. Hopfinger,et al.  Conformational Properties of Macromolecules , 1973 .

[174]  S. Takashima,et al.  Electrical Interactions in Molecular Biophysics: An Introduction , 1978 .

[175]  S. Friend,et al.  Analysis of electrostatic interactions and their relationship to conformation and stability of bovine pancreatic trypsin inhibitor. , 1982, Biochemistry.

[176]  J. Kalantar,et al.  Computer-aided structural comparisons of clonidine and guanfacine with cyclazocine , 1986 .

[177]  P. Bordewijk The average reaction field of an arbitrary charge distribution in an ellipsoidal cavity , 1970 .

[178]  F. Gurd,et al.  Electrostatic effects in hemoglobin: hydrogen ion equilibria in human deoxy- and oxyhemoglobin A. , 1979, Biochemistry.

[179]  Norman L. Allinger,et al.  Treatment of electrostatic effects within the molecular-mechanics method. 1 , 1983 .

[180]  J. Andrew McCammon,et al.  Dynamics of substrate binding to copper zinc superoxide dismutase , 1985 .