Quantum computing for finance: Overview and prospects

Abstract We discuss how quantum computation can be applied to financial problems, providing an overview of current approaches and potential prospects. We review quantum optimization algorithms, and expose how quantum annealers can be used to optimize portfolios, find arbitrage opportunities, and perform credit scoring. We also discuss deep-learning in finance, and suggestions to improve these methods through quantum machine learning. Finally, we consider quantum amplitude estimation, and how it can result in a quantum speed-up for Monte Carlo sampling. This has direct applications to many current financial methods, including pricing of derivatives and risk analysis. Perspectives are also discussed.

[1]  M. Benedetti,et al.  Estimation of effective temperatures in quantum annealers for sampling applications: A case study with possible applications in deep learning , 2015, 1510.07611.

[2]  G. Brassard,et al.  Quantum Amplitude Amplification and Estimation , 2000, quant-ph/0005055.

[3]  M. Schuld,et al.  Prediction by linear regression on a quantum computer , 2016, 1601.07823.

[4]  Ting Yu,et al.  Generalized coherent states, reproducing kernels, and quantum support vector machines , 2016, Quantum Inf. Comput..

[5]  M. Sipser,et al.  Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.

[6]  M. Kubát An Introduction to Machine Learning , 2017, Springer International Publishing.

[7]  R. Cleve,et al.  Quantum fingerprinting. , 2001, Physical review letters.

[8]  Hans-J. Briegel,et al.  Quantum-enhanced machine learning , 2016, Physical review letters.

[9]  Misha Denil Toward the Implementation of a Quantum RBM , 2011 .

[10]  Marco Lanzagorta,et al.  Quantum Simulators , 2013 .

[11]  Catalina Bulla Moreno,et al.  Análisis comparativo de rentabilidades de un portafolio de inversión valorado con diferentes metodologías , 2020 .

[12]  Yosi Keller,et al.  Financial Time Series Prediction Using Deep Learning , 2017, 1711.04174.

[13]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and EPR channels , 1993 .

[14]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[15]  Charles H. Bennett,et al.  WITHDRAWN: Quantum cryptography: Public key distribution and coin tossing , 2011 .

[16]  Ievgeniia Oshurko Quantum Machine Learning , 2020, Quantum Computing.

[17]  Jiangfeng Du,et al.  Experimental realization of a quantum support vector machine. , 2015, Physical review letters.

[18]  Ashish Kapoor,et al.  Quantum Perceptron Models , 2016, NIPS.

[19]  F. Petruccione,et al.  An introduction to quantum machine learning , 2014, Contemporary Physics.

[20]  Kesheng Wu,et al.  Solving the Optimal Trading Trajectory Problem Using a Quantum Annealer , 2015, IEEE Journal of Selected Topics in Signal Processing.

[21]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[22]  E. Farhi,et al.  Quantum Adiabatic Evolution Algorithms with Different Paths , 2002, quant-ph/0208135.

[23]  Joseph Fitzsimons,et al.  Quantum assisted Gaussian process regression , 2015, Physical Review A.

[24]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[25]  Peter Wittek,et al.  Quantum Machine Learning: What Quantum Computing Means to Data Mining , 2014 .

[26]  Stefan Woerner,et al.  Quantum risk analysis , 2018, npj Quantum Information.

[27]  Maria Schuld,et al.  Quantum ensembles of quantum classifiers , 2017, Scientific Reports.

[28]  Helmut G. Katzgraber,et al.  Viewing vanilla quantum annealing through spin glasses , 2017, Quantum Science and Technology.

[29]  Andris Ambainis,et al.  Quantum Algorithms for Matching and Network Flows , 2006, STACS.

[30]  Max Rounds,et al.  Optimal feature selection in credit scoring and classification using a quantum annealer , 2017 .

[31]  A. Mamat,et al.  A quantum algorithm for minimal spanning tree , 2008, 2008 International Symposium on Information Technology.

[32]  Alexandre M. Zagoskin Applications and speculations , 2011 .

[33]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[34]  Satoshi Nakamoto Bitcoin : A Peer-to-Peer Electronic Cash System , 2009 .

[35]  Supratik Mukhopadhyay,et al.  Deploying a quantum annealing processor to detect tree cover in aerial imagery of California , 2017, PloS one.

[36]  Carlo A. Trugenberger,et al.  Quantum Pattern Recognition , 2002, Quantum Inf. Process..

[37]  Andrew W. Cross,et al.  Quantum optimization using variational algorithms on near-term quantum devices , 2017, Quantum Science and Technology.

[38]  Chulwoo Han,et al.  Deep learning networks for stock market analysis and prediction: Methodology, data representations, and case studies , 2017, Expert Syst. Appl..

[39]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[40]  Daniel A. Lidar,et al.  Test-driving 1000 qubits , 2017, Quantum Science and Technology.

[41]  David J. Hand,et al.  Statistical fraud detection: A review , 2002 .

[42]  F. Nori,et al.  Quantum Simulation , 2013, Quantum Atom Optics.

[43]  Paul Wilmott,et al.  Paul Wilmott Introduces Quantitative Finance , 2000 .

[44]  Franco Nori,et al.  QuTiP: An open-source Python framework for the dynamics of open quantum systems , 2011, Comput. Phys. Commun..

[45]  Gianluca Bontempi,et al.  Machine Learning Strategies for Time Series Forecasting , 2012, eBISS.

[46]  T. S. Santhanam Generalized Coherent States , 1980 .

[47]  Roman Orus,et al.  A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States , 2013, 1306.2164.

[48]  Anthony J. G. Hey,et al.  Feynman Lectures on Computation , 1996 .

[49]  A. Montanaro Quantum speedup of Monte Carlo methods , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[50]  Nicholas G. Polson,et al.  Deep Learning in Finance , 2016, ArXiv.

[51]  S. Lloyd,et al.  Quantum algorithms for supervised and unsupervised machine learning , 2013, 1307.0411.

[52]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[53]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[54]  Alexander Elgart,et al.  The Adiabatic Theorem of Quantum Mechanics , 1998 .

[55]  Andrew M. Childs,et al.  Quantum Algorithm for Systems of Linear Equations with Exponentially Improved Dependence on Precision , 2015, SIAM J. Comput..

[56]  Thomas R. Bromley,et al.  Quantum computational finance: Monte Carlo pricing of financial derivatives , 2018, Physical Review A.

[57]  F. Nori,et al.  Quantum Simulators , 2009, Science.

[58]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[59]  Andrew M. Childs,et al.  Quantum linear systems algorithm with exponentially improved dependence on precision , 2015 .

[60]  Emmanuel Haven,et al.  A discussion on embedding the Black-Scholes option pricing model in a quantum physics setting , 2002 .

[61]  Ashish Kapoor,et al.  Quantum deep learning , 2014, Quantum Inf. Comput..

[62]  Gilles Brassard,et al.  Machine Learning in a Quantum World , 2006, Canadian AI.

[63]  Guoming Wang Quantum Algorithm for Linear Regression , 2017 .

[64]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[65]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[66]  N. Cerf,et al.  Quantum search by local adiabatic evolution , 2001, quant-ph/0107015.

[67]  Roger Melko,et al.  Quantum Boltzmann Machine , 2016, 1601.02036.

[68]  Johan A. K. Suykens,et al.  Benchmarking state-of-the-art classification algorithms for credit scoring , 2003, J. Oper. Res. Soc..

[69]  Seth Lloyd,et al.  Quantum algorithm for data fitting. , 2012, Physical review letters.

[70]  Seth Lloyd,et al.  Adiabatic quantum computation is equivalent to standard quantum computation , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[71]  Anmer Daskin Quantum Principal Component Analysis , 2015 .

[72]  K. Wiesner,et al.  Hidden Quantum Markov Models and non-adaptive read-out of many-body states , 2010, 1002.2337.

[73]  Yue Ruan,et al.  Quantum Algorithm for K-Nearest Neighbors Classification Based on the Metric of Hamming Distance , 2017, International Journal of Theoretical Physics.

[74]  Steven H. Adachi,et al.  Application of Quantum Annealing to Training of Deep Neural Networks , 2015, ArXiv.

[75]  R. Schützhold,et al.  Pattern recognition on a quantum computer , 2003 .

[76]  Nathan Wiebe,et al.  Can small quantum systems learn , 2015, Quantum Inf. Comput..

[77]  Franco Nori,et al.  QuTiP 2: A Python framework for the dynamics of open quantum systems , 2012, Comput. Phys. Commun..

[78]  Isaac L. Chuang,et al.  Quantum Inference on Bayesian Networks , 2014, ArXiv.

[79]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[80]  Ashley Montanaro,et al.  Applying quantum algorithms to constraint satisfaction problems , 2018, Quantum.

[81]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[82]  David Poulin,et al.  A small quantum computer is needed to optimize fault-tolerant protocols , 2017, Quantum Science and Technology.

[83]  Stephen Wiesner,et al.  Conjugate coding , 1983, SIGA.

[84]  R. C. Merton,et al.  Theory of Rational Option Pricing , 2015, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[85]  Efraim Turban,et al.  Neural Networks in Finance and Investing: Using Artificial Intelligence to Improve Real-World Performance , 1992 .

[86]  B. Baaquie Quantum Finance: Path Integrals and Hamiltonians for Options and Interest Rates , 2004 .

[87]  Rupak Biswas,et al.  Opportunities and challenges for quantum-assisted machine learning in near-term quantum computers , 2017, Quantum Science and Technology.