Sensitivity Analysis of Chaotic Systems Using Unstable Periodic Orbits

A well-behaved adjoint sensitivity technique for chaotic dynamical systems is presented. The method arises from the specialisation of established variational techniques to the unstable periodic orbits of the system. On such trajectories, the adjoint problem becomes a time periodic boundary value problem. The adjoint solution remains bounded in time and does not exhibit the typical unbounded exponential growth observed using traditional methods over unstable non-periodic trajectories (Lea et al., Tellus 52 (2000)). This enables the sensitivity of period averaged quantities to be calculated exactly, regardless of the orbit period, because the stability of the tangent dynamics is decoupled effectively from the sensitivity calculations. We demonstrate the method on two prototypical systems, the Lorenz equations at standard parameters and the Kuramoto-Sivashinky equation, a one-dimensional partial differential equation with chaotic behaviour. We report a statistical analysis of the sensitivity of these two systems based on databases of unstable periodic orbits of size 10^5 and 4x10^4, respectively. The empirical observation is that most orbits predict approximately the same sensitivity. The effects of symmetries, bifurcations and intermittency are discussed and future work is outlined in the conclusions.

[1]  G. Pavliotis,et al.  Controlling spatiotemporal chaos in active dissipative-dispersive nonlinear systems. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  S. Ershov Is a perturbation theory for dynamical chaos possible , 1993 .

[3]  Auerbach,et al.  Exploring chaotic motion through periodic orbits. , 1987, Physical review letters.

[4]  Celso Grebogi,et al.  How long do numerical chaotic solutions remain valid , 1997 .

[5]  Ruslan L. Davidchack,et al.  On the State Space Geometry of the Kuramoto-Sivashinsky Flow in a Periodic Domain , 2007, SIAM J. Appl. Dyn. Syst..

[6]  S. Camarri,et al.  Structural sensitivity of the secondary instability in the wake of a circular cylinder , 2010, Journal of Fluid Mechanics.

[7]  J. Gibson,et al.  Equilibrium and travelling-wave solutions of plane Couette flow , 2008, Journal of Fluid Mechanics.

[8]  M. Allen,et al.  Sensitivity analysis of the climate of a chaotic system , 2000 .

[9]  Timothy D Sauer Shadowing breakdown and large errors in dynamical simulations of physical systems. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Qiqi Wang,et al.  Least Squares Shadowing sensitivity analysis of chaotic limit cycle oscillations , 2012, J. Comput. Phys..

[11]  A. Gritsun Unstable periodic orbits and sensitivity of the barotropic model of the atmosphere , 2010 .

[12]  M. Nagata,et al.  Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity , 1990, Journal of Fluid Mechanics.

[13]  Michael R. Osborne,et al.  Numerical solution of boundary value problems for ordinary differential equations , 1995, Classics in applied mathematics.

[14]  Divakar Viswanath,et al.  The Lindstedt-Poincaré Technique as an Algorithm for Computing Periodic Orbits , 2001, SIAM Rev..

[15]  Celso Grebogi,et al.  Using small perturbations to control chaos , 1993, Nature.

[16]  M. Uhlmann,et al.  The Significance of Simple Invariant Solutions in Turbulent Flows , 2011, 1108.0975.

[17]  G. Eyink,et al.  Ruelle's linear response formula, ensemble adjoint schemes and Lévy flights , 2004 .

[18]  Panagiotis D. Christofides,et al.  Feedback control of the Kuramoto-Sivashinsky equation , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[19]  Yueheng Lan,et al.  Variational method for finding periodic orbits in a general flow. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Structural sensitivities of soft and steep nonlinear global modes in spatially developing media , 2015 .

[21]  Qiqi Wang,et al.  Forward and adjoint sensitivity computation of chaotic dynamical systems , 2012, J. Comput. Phys..

[22]  Pavan Kumar Hanumolu,et al.  Sensitivity Analysis for Oscillators , 2008, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[23]  Jacob K. White,et al.  Sensitivity Analysis for Oscillating Dynamical Systems , 2009, SIAM J. Sci. Comput..

[24]  G. Sivashinsky,et al.  On Irregular Wavy Flow of a Liquid Film Down a Vertical Plane , 1980 .

[25]  J. Wilkening,et al.  A fully discrete adjoint method for optimization of flow problems on deforming domains with time-periodicity constraints , 2015, 1512.00616.

[26]  Gary J. Chandler,et al.  Invariant recurrent solutions embedded in a turbulent two-dimensional Kolmogorov flow , 2013, Journal of Fluid Mechanics.

[27]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[28]  Lloyd N. Trefethen,et al.  The Exponentially Convergent Trapezoidal Rule , 2014, SIAM Rev..

[29]  Sensitivity of attractor to external influences: approach by unstable periodic orbits , 2001 .

[30]  Yoshiki Kuramoto,et al.  Diffusion-Induced Chaos in Reaction Systems , 1978 .

[31]  Carol S. Woodward,et al.  Enabling New Flexibility in the SUNDIALS Suite of Nonlinear and Differential/Algebraic Equation Solvers , 2020, ACM Trans. Math. Softw..

[32]  Willy Govaerts,et al.  Solution of bordered singular systems in numerical continuation and bifurcation , 1994 .

[33]  J. Sprott Chaos and time-series analysis , 2001 .

[34]  Qiqi Wang,et al.  Convergence of the Least Squares Shadowing Method for Computing Derivative of Ergodic Averages , 2013, SIAM J. Numer. Anal..

[35]  John Thuburn,et al.  Climate sensitivities via a Fokker–Planck adjoint approach , 2005 .

[36]  Qiqi Wang,et al.  Least squares shadowing sensitivity analysis of a modified Kuramoto–Sivashinsky equation , 2013, 1307.8197.

[37]  Hui-Yu Tsai,et al.  Lorenz Equations 之研究 , 1998 .

[38]  H. Greenside,et al.  Spatially localized unstable periodic orbits of a high-dimensional chaotic system , 1998 .

[39]  Yueheng Lan,et al.  Unstable recurrent patterns in Kuramoto-Sivashinsky dynamics. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[41]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[42]  Milan Batista,et al.  The use of the Sherman-Morrison-Woodbury formula to solve cyclic block tri-diagonal and cyclic block penta-diagonal linear systems of equations , 2009, Appl. Math. Comput..

[43]  P. Cvitanović,et al.  Spatiotemporal chaos in terms of unstable recurrent patterns , 1996, chao-dyn/9606016.

[44]  Divakar Viswanath,et al.  Symbolic dynamics and periodic orbits of the Lorenz attractor* , 2003 .

[45]  Genta Kawahara,et al.  Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst , 2001, Journal of Fluid Mechanics.

[46]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .