Experimental and theoretical study of thymine and cytosine derivatives: the crucial role of weak noncovalent interactions

In this paper we report the synthesis of N1-hexylthymine (1), N1-hexylcytosine (2), N1-hexylcytosine hydrobromide (3) and [(N1-hexylcytosinium)·(N1-hexylcytosine)]2·[Cl2Hg(μ-Cl)2HgCl2] (4) (the hemiprotonated form of the N1-hexylcytosine forming a CHC+ pair with carbonyl-amino symmetric and N3–N3 recognitions) and X-ray characterization of compounds 1, 3 and 4. In the solid state, N1-hexylthymine 1 follows exactly the same behaviour as N1-hexyluracil. In addition to strong hydrogen bonding interactions, various weak forces, i.e. C–H/π, carbonyl–carbonyl (CO⋯CO) and anion–π interactions (between the bromide and N1 of cytosine in 3), play a key role in stabilizing the 3D architectures of the compounds. The theoretical calculations allow estimation of the strength of these contacts and how they influence each other.

[1]  E. Molins,et al.  Synthesis, X-ray characterization and computational Studies of N -imidazolyl and N -pyrazolyl pyrimidine derivatives , 2012 .

[2]  P. Gamez,et al.  Anion–arene and lone pair–arene interactions are directional , 2012 .

[3]  A. Frontera,et al.  Putting anion-π interactions into perspective. , 2011, Angewandte Chemie.

[4]  D. Quiñonero,et al.  Anion-π interactions in flavoproteins. , 2011, Chemistry, an Asian journal.

[5]  M. Nishio,et al.  The CH/π hydrogen bond in chemistry. Conformation, supramolecules, optical resolution and interactions involving carbohydrates. , 2011, Physical chemistry chemical physics : PCCP.

[6]  C. Estarellas,et al.  Supramolecular assemblies involving anion–π and lone pair–π interactions: experimental observation and theoretical analysis , 2011 .

[7]  C. Estarellas,et al.  Supramolecular Self-Assembly of M-IDA Complexes Involving Lone-Pair···π Interactions: Crystal Structures, Hirshfeld Surface Analysis, and DFT Calculations [H2IDA = iminodiacetic acid, M = Cu(II), Ni(II)] , 2011 .

[8]  Ernst-Walter Knapp,et al.  Recent advances in anion–π interactions , 2011 .

[9]  C. Estarellas,et al.  RNAs' uracil quartet model with a non-essential metal ion. , 2011, Chemical communications.

[10]  D. Quiñonero,et al.  On the directionality of anion-π interactions. , 2011, Physical chemistry chemical physics : PCCP.

[11]  Chongqing Wan,et al.  Unusual Carbonyl···Carbonyl Interaction in Supramolecular Structures of Silver(I) Complexes with 2,6-Pyridinediylbis(4-pyridinyl)methanone , 2011 .

[12]  D. Quiñonero,et al.  Relevant anion-π interactions in biological systems: the case of urate oxidase. , 2011, Angewandte Chemie.

[13]  D. Quiñonero,et al.  Experimental and theoretical study of uracil derivatives: the crucial role of weak fluorine–fluorine noncovalent interactions , 2010 .

[14]  C. Estarellas,et al.  Supramolecular assembly of Mg(II) complexes directed by associative lone pair-pi/pi-pi/pi-anion-pi/pi-lone pair interactions. , 2010, The journal of physical chemistry. B.

[15]  D. Quiñonero,et al.  Lone pair–π vs π–π interactions in 5-fluoro-1-hexyluracil and 1-hexyluracil: a combined crystallographic and computational study , 2010 .

[16]  Philip Kim,et al.  Near-field focusing and magnification through self-assembled nanoscale spherical lenses , 2009, Nature.

[17]  Philip A. Gale,et al.  Anion receptor chemistry: highlights from 2007. , 2009, Chemical Society reviews.

[18]  D. Quiñonero,et al.  Theoretical and crystallographic study of edge-to-face aromatic interactions between pyridine moieties and benzene , 2009 .

[19]  S. Price,et al.  Computed crystal energy landscapes for understanding and predicting organic crystal structures and polymorphism. , 2009, Accounts of chemical research.

[20]  Barbara H. Munk,et al.  Calculation of pKa values of nucleobases and the guanine oxidation products guanidinohydantoin and spiroiminodihydantoin using density functional theory and a polarizable continuum model. , 2008, The journal of physical chemistry. B.

[21]  Tejender S. Thakur,et al.  Crystal Structure Prediction of a Co-Crystal Using a Supramolecular Synthon Approach: 2-Methylbenzoic Acid−2-Amino-4-methylpyrimidine , 2008 .

[22]  J. Reedijk,et al.  What’s New in the Realm of Anion−π Binding Interactions? Putting the Anion−π Interaction in Perspective , 2008 .

[23]  K. Dunbar,et al.  Anion-pi interactions. , 2008, Chemical Society reviews.

[24]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[25]  M. Drew,et al.  4,4′-Dipyridyl-N,N′-dioxide complexes of metal-thiocyanate/ selenocyanate: π-stacked molecular rods as three-dimensional support for two-dimensional polymeric sheets and intra/interchain S⋯S interaction dependent architecture of the R22(8) synthon driven assembly of one-dimensional polymeric chains , 2007 .

[26]  G. Saito,et al.  Organic Conductor Based on Nucleobase: Structural and Electronic Properties of a Charge-Transfer Solid Composed of TCNQ Anion Radical and Hemiprotonated Cytosine , 2007 .

[27]  S. Teat,et al.  Anion binding involving pi-acidic heteroaromatic rings. , 2007, Accounts of chemical research.

[28]  M. Egli,et al.  Lone pair-aromatic interactions: to stabilize or not to stabilize. , 2007, Accounts of chemical research.

[29]  M. Halcrow,et al.  Synthesis of 2,6-di(pyrazol-1-yl)-4-bromomethylpyridine, and its conversion to other 2,6-di(pyrazol-1-yl)pyridines substituted at the pyridine ring , 2007 .

[30]  Han Myoung Lee,et al.  De novo design approach based on nanorecognition toward development of functional molecules/materials and nanosensors/nanodevices , 2007 .

[31]  Robin Taylor,et al.  Mercury: visualization and analysis of crystal structures , 2006 .

[32]  C. Massera,et al.  Crystallographic and theoretical evidence of acetonitrile-π interactions with the electron-deficient 1,3,5-triazine ring , 2006 .

[33]  M. Nishio CH/π hydrogen bonds in crystals , 2004 .

[34]  Stefan Grimme,et al.  Improved third‐order Møller–Plesset perturbation theory , 2003, J. Comput. Chem..

[35]  Martin Egli,et al.  Water-nucleobase "stacking": H-pi and lone pair-pi interactions in the atomic resolution crystal structure of an RNA pseudoknot. , 2003, Journal of the American Chemical Society.

[36]  S. Grimme Improved second-order Møller–Plesset perturbation theory by separate scaling of parallel- and antiparallel-spin pair correlation energies , 2003 .

[37]  Anthony L. Spek,et al.  Journal of , 1993 .

[38]  James M. Lisy,et al.  Cation-π Interactions: A Theoretical Investigation of the Interaction of Metallic and Organic Cations with Alkenes, Arenes, and Heteroarenes , 2003 .

[39]  David Quiñonero,et al.  Anion-pi Interactions: do they exist? , 2002, Angewandte Chemie.

[40]  José Elguero,et al.  Interaction of anions with perfluoro aromatic compounds. , 2002, Journal of the American Chemical Society.

[41]  Michael D Bartberger,et al.  Anion-aromatic bonding: a case for anion recognition by pi-acidic rings. , 2002, Journal of the American Chemical Society.

[42]  A. Beatty,et al.  "Total Synthesis" Supramolecular Style: Design and Hydrogen-Bond-Directed Assembly of Ternary Supermolecules. , 2001, Angewandte Chemie.

[43]  Louis J. Farrugia,et al.  WinGX suite for small-molecule single-crystal crystallography , 1999 .

[44]  Maria Cristina Burla,et al.  SIR97: a new tool for crystal structure determination and refinement , 1999 .

[45]  Louis J. Farrugia,et al.  ORTEP-3 for Windows - a version of ORTEP-III with a Graphical User Interface (GUI) , 1997 .

[46]  D. A. Dougherty,et al.  The Cationminus signpi Interaction. , 1997, Chemical reviews.

[47]  M. Egli,et al.  Stereoelectronic effects of deoxyribose O4' on DNA conformation. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Sang Joo Lee,et al.  On Binding Forces between Aromatic Ring and Quaternary Ammonium Compound , 1994 .

[49]  Christopher A. Hunter,et al.  The nature of .pi.-.pi. interactions , 1990 .

[50]  G A Petsko,et al.  Aromatic-aromatic interaction: a mechanism of protein structure stabilization. , 1985, Science.