RASA1: variable phenotype with capillary and arteriovenous malformations.

[1]  J. Mulliken,et al.  Four common glomulin mutations cause two thirds of glomuvenous malformations (“familial glomangiomas”): evidence for a founder effect , 2005, Journal of Medical Genetics.

[2]  G. Viale,et al.  Search for loss of heterozygosity and mutation analysis of KRIT1 gene in CCM patients , 2004, American journal of medical genetics. Part A.

[3]  J. Mulliken,et al.  Glomuvenous malformation (glomangioma) and venous malformation: distinct clinicopathologic and genetic entities. , 2004, Archives of dermatology.

[4]  S. Hanks,et al.  Overexpression of FAK promotes Ras activity through the formation of a FAK/p120RasGAP complex in malignant astrocytoma cells , 2004, Oncogene.

[5]  F. Andermann,et al.  CCM1 mutation screen of sporadic cases with cerebral cavernous malformations , 2004, Neurology.

[6]  A. Rustgi,et al.  A combined syndrome of juvenile polyposis and hereditary haemorrhagic telangiectasia associated with mutations in MADH4 (SMAD4) , 2004, The Lancet.

[7]  P. Frérebeau,et al.  Mutations within the MGC4607 gene cause cerebral cavernous malformations. , 2004, American journal of human genetics.

[8]  C. Liquori,et al.  Mutations in a gene encoding a novel protein containing a phosphotyrosine-binding domain cause type 2 cerebral cavernous malformations. , 2003, American journal of human genetics.

[9]  Miikka Vikkula,et al.  Capillary malformation-arteriovenous malformation, a new clinical and genetic disorder caused by RASA1 mutations. , 2003, American journal of human genetics.

[10]  M. Vikkula,et al.  Vascular malformations: localized defects in vascular morphogenesis , 2003, Clinical genetics.

[11]  T. Pawson,et al.  Transgenic RNA interference in ES cell–derived embryos recapitulates a genetic null phenotype , 2003, Nature Biotechnology.

[12]  J. Mulliken,et al.  Locus for susceptibility for familial capillary malformation (‘port-wine stain’) maps to 5q , 2002, European Journal of Human Genetics.

[13]  J. Mulliken,et al.  Mutations in a novel factor, glomulin, are responsible for glomuvenous malformations ("glomangiomas"). , 2002, American journal of human genetics.

[14]  J. Glanzer,et al.  Organization and regulation of the human rasGAP gene. , 2002, Gene.

[15]  D. Chang,et al.  Interaction between krit1 and icap1alpha infers perturbation of integrin beta1-mediated angiogenesis in the pathogenesis of cerebral cavernous malformation. , 2001, Human molecular genetics.

[16]  A. Hall,et al.  The GTPase Rap1 controls functional activation of macrophage integrin αMβ2 by LPS and other inflammatory mediators , 2000, Current Biology.

[17]  R. Wolthuis,et al.  The Small Gtpase, Rap1, Mediates Cd31-Induced Integrin Adhesion , 2000, The Journal of cell biology.

[18]  N. Minato,et al.  Rap1 Is a Potent Activation Signal for Leukocyte Function-Associated Antigen 1 Distinct from Protein Kinase C and Phosphatidylinositol-3-OH Kinase , 2000, Molecular and Cellular Biology.

[19]  A. Joutel,et al.  Truncating mutations in CCM1, encoding KRIT1, cause hereditary cavernous angiomas , 1999, Nature Genetics.

[20]  L. Cantley,et al.  Vascular Dysmorphogenesis Caused by an Activating Mutation in the Receptor Tyrosine Kinase TIE2 , 1996, Cell.

[21]  L. Debussche,et al.  A Ras-GTPase-activating protein SH3-domain-binding protein , 1996, Molecular and cellular biology.

[22]  D. W. Johnson,et al.  Mutations in the activin receptor–like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2 , 1996, Nature Genetics.

[23]  T. Pawson,et al.  Vascular system defects and neuronal apoptosis in mice lacking Ras GTPase-activating protein , 1995, Nature.

[24]  Peter J. Cullen,et al.  Identification of a specific lns(l,3,4,5)P4-binding protein as a member of the GAP1 family , 1995, Nature.

[25]  Y. Imai,et al.  A novel mammalian Ras GTPase-activating protein which has phospholipid-binding and Btk homology regions , 1994, Molecular and cellular biology.

[26]  Frank McCormick,et al.  Nonsense mutations in the C–terminal SH2 region of the GTPase activating protein (GAP) gene in human tumours , 1993, Nature Genetics.

[27]  R. Weinberg,et al.  Association between GTPase activators for Rho and Ras families , 1992, Nature.

[28]  P. O’Connell,et al.  The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21 , 1990, Cell.

[29]  Margaret Robertson,et al.  The neurofibromatosis type 1 gene encodes a protein related to GAP , 1990, Cell.

[30]  A. Wittinghofer,et al.  Inhibition of GTPase activating protein stimulation of Ras-p21 GTPase by the Krev-1 gene product. , 1990, Science.

[31]  T. Sasaki,et al.  Inhibition of the ras p21 GTPase-activating protein-stimulated GTPase activity of c-Ha-ras p21 by smg p21 having the same putative effector domain as ras p21s. , 1990, The Journal of biological chemistry.

[32]  Joyce Bos ras oncogenes in human cancer: a review. , 1989, Cancer research.

[33]  J. Mulliken,et al.  Vascular Birthmarks: Hemangiomas and Malformations , 1988 .

[34]  F. McCormick,et al.  A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants. , 1987, Science.

[35]  J. Glowacki,et al.  Hemangiomas and Vascular Malformations in Infants and Children: A Classification Based on Endothelial Characteristics , 1982, Plastic and reconstructive surgery.

[36]  D. W. Johnson,et al.  Endoglin, a TGF-β binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1 , 1994, Nature Genetics.