Stability and Computation of Medial Axes - a State-of-the-Art Report

The medial axis of a geometric shape captures its connectivity. In spite of its inherent instability, it has found applications in a number of areas that deal with shapes. In this survey paper, we focus on results that shed light on this instability and use the new insights to generate simplified and stable modifications of the medial axis.

[1]  R. Brubaker Models for the perception of speech and visual form: Weiant Wathen-Dunn, ed.: Cambridge, Mass., The M.I.T. Press, I–X, 470 pages , 1968 .

[2]  Martin D. Levine,et al.  Multiple Resolution Skeletons , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Franz Aurenhammer,et al.  Geometric Relations Among Voronoi Diagrams , 1987, STACS.

[4]  Christoph M. Hoffmann,et al.  Geometric and Solid Modeling , 1989 .

[5]  Serge Beucher,et al.  Segmentation tools in mathematical morphology , 1990, Optics & Photonics.

[6]  Linda G. Shapiro,et al.  Computer and Robot Vision , 1991 .

[7]  Ching Y. Suen,et al.  Thinning Methodologies - A Comprehensive Survey , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Herbert Edelsbrunner,et al.  Three-dimensional alpha shapes , 1992, VVS.

[9]  V. Ralph Algazi,et al.  Continuous skeleton computation by Voronoi diagram , 1991, CVGIP Image Underst..

[10]  G. Strang Introduction to Linear Algebra , 1993 .

[11]  Milan Sonka,et al.  Image Processing, Analysis and Machine Vision , 1993, Springer US.

[12]  Gabriella Sanniti di Baja,et al.  A Multiresolution Shape Description Algorithm , 1993, CAIP.

[13]  J. Brandt Convergence and continuity criteria for discrete approximations of the continuous planar skeleton , 1994 .

[14]  Tosiyasu L. Kunii,et al.  Ridges and Ravines: a Singularity Approach , 1994, Int. J. Shape Model..

[15]  Emanuele Trucco,et al.  Computer and Robot Vision , 1995 .

[16]  Gabriella Sanniti di Baja,et al.  Aspects of Visual Form Processing , 1995 .

[17]  Franz-Erich Wolter Cut Locus and Medial Axis in Global Shape Interrogation and Representation , 1995 .

[18]  Dominique Attali,et al.  Modeling noise for a better simplification of skeletons , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[19]  Christoph Burnikel,et al.  Exact computation of Voronoi diagrams and line segment intersections , 1996 .

[20]  Nicholas M. Patrikalakis,et al.  Differential and Topological Properties of Medial Axis Transforms , 1996, CVGIP Graph. Model. Image Process..

[21]  M. Price,et al.  Hexahedral Mesh Generation by Medial Surface Subdivision: Part II. Solids with Flat and Concave Edges , 1997 .

[22]  Timothy M. Chan,et al.  Primal Dividing and Dual Pruning: Output-Sensitive Construction of Four-Dimensional Polytopes and Three-Dimensional Voronoi Diagrams , 1997, Discret. Comput. Geom..

[23]  Hwan Pyo Moon,et al.  MATHEMATICAL THEORY OF MEDIAL AXIS TRANSFORM , 1997 .

[24]  Marshall W. Bern,et al.  Surface Reconstruction by Voronoi Filtering , 1998, SCG '98.

[25]  Alfred M. Bruckstein,et al.  Pruning Medial Axes , 1998, Comput. Vis. Image Underst..

[26]  David Eppstein,et al.  The Crust and the beta-Skeleton: Combinatorial Curve Reconstruction , 1998, Graph. Model. Image Process..

[27]  Alla Sheffer,et al.  Hexahedral Mesh Generation using the Embedded Voronoi Graph , 1999, Engineering with Computers.

[28]  R. Farouki,et al.  Voronoi diagram and medial axis algorithm for planar domains with curved boundaries I. Theoretical foundations , 1999 .

[29]  R. Farouki,et al.  Voronoi diagram and medial axis algorithm for planar domains with curved boundaries — II: Detailed algorithm description , 1999 .

[30]  Dinesh Manocha,et al.  Computing the medial axis of a polyhedron reliably and efficiently , 2000 .

[31]  Martin Held,et al.  VRONI: An engineering approach to the reliable and efficient computation of Voronoi diagrams of points and line segments , 2001, Comput. Geom..

[32]  Jean-Daniel Boissonnat,et al.  Natural neighbor coordinates of points on a surface , 2001, Comput. Geom..

[33]  Sunghee Choi,et al.  The power crust, unions of balls, and the medial axis transform , 2001, Comput. Geom..

[34]  Jacques-Olivier Lachaud,et al.  Delaunay conforming iso-surface, skeleton extraction and noise removal , 2001, Comput. Geom..

[35]  Hans-Peter Seidel,et al.  Linear onesided stability of MAT for weakly injective 3D domain , 2002, SMA '02.

[36]  B. Dundas,et al.  DIFFERENTIAL TOPOLOGY , 2002 .

[37]  Joachim Giesen,et al.  Surface reconstruction based on a dynamical system † , 2002, Comput. Graph. Forum.

[38]  Tosiyasu L. Kunii,et al.  A Skeleton‐based Approach for Detection of Perceptually Salient Features on Polygonal Surfaces , 2002, Comput. Graph. Forum.

[39]  Herbert Edelsbrunner,et al.  Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[40]  Jean-Daniel Boissonnat,et al.  A linear bound on the complexity of the delaunay triangulation of points on polyhedral surfaces , 2002, SMA '02.

[41]  Linda G. Shapiro,et al.  Computer and Robot Vision (Volume II) , 2002 .

[42]  Dinesh Manocha,et al.  Efficient computation of a simplified medial axis , 2003, SM '03.

[43]  Jean-Daniel Boissonnat,et al.  Complexity of the Delaunay Triangulation of Points on Polyhedral Surfaces , 2003, Discret. Comput. Geom..

[44]  Tamal K. Dey,et al.  Shape Segmentation and Matching with Flow Discretization , 2003, WADS.

[45]  Jean-Daniel Boissonnat,et al.  Sur la complexité combinatoire des cellules des diagrammes de Voronoï Euclidiens et des enveloppes convexes de sphères de , 2022 .

[46]  B. Aronov,et al.  Discrete and computational geometry : the Goodman-Pollack Festschrift , 2003 .

[47]  Tamal K. Dey,et al.  Approximating the Medial Axis from the Voronoi Diagram with a Convergence Guarantee , 2003, Algorithmica.

[48]  Jean-Daniel Boissonnat,et al.  Complexity of the delaunay triangulation of points on surfaces the smooth case , 2003, SCG '03.

[49]  F. Chazal,et al.  Stability and Finiteness Properties of Medial Axis and Skeleton , 2004 .

[50]  Benjamin B. Kimia,et al.  A formal classification of 3D medial axis points and their local geometry , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[51]  Tamal K. Dey,et al.  Approximate medial axis as a voronoi subcomplex , 2002, SMA '02.

[52]  André Lieutier,et al.  Any open bounded subset of Rn has the same homotopy type as its medial axis , 2004, Comput. Aided Des..

[53]  Hans-Peter Seidel,et al.  Linear one-sided stability of MAT for weakly injective 3D domain , 2004, Comput. Aided Des..

[54]  F. Chazal,et al.  Stability and homotopy of a subset of the medial axis , 2004, SM '04.

[55]  G. Swaminathan Robot Motion Planning , 2006 .

[56]  William K. Pratt,et al.  Digital Image Processing, 4th Edition , 2007, J. Electronic Imaging.

[57]  Timothy M. Chan,et al.  Primal Dividing and Dual Pruning: Output-Sensitive Construction of 4-d Polytopes and 3-d Voronoi Diagrams , 2007 .