Numerical study of Williamson nano fluid flow in an asymmetric channel

This article investigates with the peristaltic flow of a Williamson nano fluid in an asymmetric channel. The related modeling of the problem has been done in Cartesian coordinate system. Problem has been simplified with the reliable assumptions i.e. long wave length and small Reynolds number. Numerical solutions have been evaluated for stream function, velocity profile, temperature profile, nano particle phenomena and pressure rise. Graphical results have been presented and discussed for various involved parameters.

[1]  Stephen U. S. Choi Enhancing thermal conductivity of fluids with nano-particles , 1995 .

[2]  Tasawar Hayat,et al.  Peristaltic flow of a nanofluid with slip effects , 2012 .

[3]  Kh. S. Mekheimer,et al.  The influence of heat transfer and magnetic field on peristaltic transport of a Newtonian fluid in a vertical annulus: Application of an endoscope , 2008 .

[4]  Kh. S. Mekheimer,et al.  Effect of the induced magnetic field on peristaltic flow of a couple stress fluid , 2008 .

[5]  Dharmendra Tripathi,et al.  A mathematical model for the peristaltic flow of chyme movement in small intestine. , 2011, Mathematical biosciences.

[6]  Abdul Aziz,et al.  Natural convective boundary layer flow of a nanofluid past a convectively heated vertical plate , 2012 .

[7]  Z. H. Khan,et al.  Triple diffusive free convection along a horizontal plate in porous media saturated by a nanofluid w , 2013 .

[8]  S. Srinivas,et al.  Peristaltic transport of a Newtonian fluid in a vertical asymmetric channel with heat transfer and porous medium , 2009, Appl. Math. Comput..

[9]  Nandy Putra,et al.  Pool boiling of nano-fluids on horizontal narrow tubes , 2003 .

[10]  Dharmendra Tripathi,et al.  Peristaltic transport of fractional Maxwell fluids in uniform tubes: Applications in endoscopy , 2011, Comput. Math. Appl..

[11]  Mehdi Dehghan,et al.  Meshless local boundary integral equation (LBIE) method for the unsteady magnetohydrodynamic (MHD) flow in rectangular and circular pipes , 2009, Comput. Phys. Commun..

[12]  Sohail Nadeem,et al.  Endoscopic Effects on Peristaltic Flow of a Nanofluid , 2011 .

[13]  Abdul Aziz,et al.  Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition , 2011 .

[14]  Donald A. Nield,et al.  Natural convective boundary-layer flow of a nanofluid past a vertical plate , 2010 .

[15]  S. Srinivas,et al.  The influence of heat and mass transfer on MHD peristaltic flow through a porous space with compliant walls , 2009, Appl. Math. Comput..

[16]  J. Buongiorno Convective Transport in Nanofluids , 2006 .

[17]  N. Akbar,et al.  Peristaltic flow of a Phan-Thien-Tanner nanofluid in a diverging tube , 2012 .

[18]  M. Dehghan,et al.  The boundary elements method for magneto-hydrodynamic (MHD) channel flows at high Hartmann numbers , 2013 .

[19]  K. Khanafer,et al.  BUOYANCY-DRIVEN HEAT TRANSFER ENHANCEMENT IN A TWO-DIMENSIONAL ENCLOSURE UTILIZING NANOFLUIDS , 2003 .

[20]  Y. Xuan,et al.  Investigation on Convective Heat Transfer and Flow Features of Nanofluids , 2003 .

[21]  M. Dehghan,et al.  A finite volume spectral element method for solving magnetohydrodynamic (MHD) equations , 2011 .

[22]  Tasawar Hayat,et al.  Peristaltic flow of a Williamson fluid in an inclined asymmetric channel with partial slip and heat transfer , 2012 .

[23]  S. Srinivas,et al.  The influence of slip conditions, wall properties and heat transfer on MHD peristaltic transport , 2009, Comput. Phys. Commun..

[24]  Tasawar Hayat,et al.  Peristaltic flow of a nanofluid in a non-uniform tube , 2012 .