DORIS/SLR POD modeling improvements for Jason-1 and Jason-2

Abstract The long-term stability and the precision of the satellite orbit is a critical component of the Jason-1 and Jason-2 (OSTM) Missions, providing the reference frame for ocean mapping using altimeter data. DORIS tracking in combination with SLR has provided orbits, which are both highly accurate and consistent across missions using the latest and most accurate POD models. These models include GRACE-derived static and time varying gravity fields and a refined Terrestrial Reference Frame based on SLR and DORIS data yielding a uniform station complement. Additional improvements have been achieved based on advances in modeling the satellite surface forces and the tropospheric path delay for DORIS measurements. This paper presents these model improvements for Jason-1 and Jason-2, including a description of DORIS sensitivity to error in tropospheric path delay. We show that the detailed University College London (UCL) radiation pressure model for Jason-1, which includes self-shadowing and thermal re-radiation, is superior to the use of a macromodel for radiation pressure surface force modeling. Improvements in SLR residuals are seen over all Beta-prime angles for both Jason-1 and Jason-2 using the UCL model, with the greatest improvement found over regimes of low Beta-prime where orbit Earth shadowing is maximum. The overall radial orbit improvement for Jason-1 using the UCL model is 3 mm RMS, as corroborated by the improvement in the independent altimeter crossover data. Special attention is paid to Jason-2 POD to assess improvements gained with the latest advances in DORIS receiver technology. Tests using SLR and altimeter crossover residuals suggest the Jason-2 reduced-dynamic DORIS-only, SLR/DORIS, and GPS orbits have all achieved 1-cm radial accuracy. Tests using independent SLR data acquired at high elevation show an average fit value of 1.02 cm for the DORIS-only and 0.94 cm for the GPS reduced-dynamic orbits. Orbit differences suggest that the largest remaining errors in the Jason-2 dynamic orbit solutions are due to radiation pressure mis-modeling and variations in the geopotential not captured in the GRACE-derived annual terms.

[1]  Bruce J. Haines,et al.  Sub-Centimeter Precision Orbit Determination with GPS for Ocean Altimetry , 2010 .

[2]  C. Noll,et al.  The International DORIS Service: genesis and early achievements , 2006 .

[3]  S. Luthcke,et al.  Towards a Seamless Transition from TOPEX/Poseidon to Jason-1 , 2004 .

[4]  Jeffrey P. Walker,et al.  THE GLOBAL LAND DATA ASSIMILATION SYSTEM , 2004 .

[5]  C. Tourain,et al.  DORIS system: The new age , 2010 .

[6]  Jean-Charles Marty,et al.  Temporal gravity field models inferred from GRACE data , 2007 .

[7]  Frank G. Lemoine,et al.  GSFC DORIS contribution to ITRF2008 , 2010 .

[8]  Paul Cross,et al.  GPS Block IIR Non-Conservative Force Modeling: Computation and Implications , 2003 .

[9]  Oscar L. Colombo,et al.  Ephemeris errors of GPS satellites , 1986 .

[10]  Y. Bar-Sever,et al.  Systematic biases in DORIS-derived geocenter time series related to solar radiation pressure mis-modeling , 2009 .

[11]  R. Ray,et al.  Barometric Tides from ECMWF Operational Analyses , 2003 .

[12]  Shannon T. Brown,et al.  Assessment of the Jason-2 Extension to the TOPEX/Poseidon, Jason-1 Sea-Surface Height Time Series for Global Mean Sea Level Monitoring , 2010 .

[13]  F. LeMoine,et al.  A reassessment of global and regional mean sea level trends from TOPEX and Jason‐1 altimetry based on revised reference frame and orbits , 2007 .

[14]  C. Chao,et al.  The tropospheric calibration model for Mariner Mars 1971 , 1974 .

[15]  J. Ries,et al.  Precision Orbit Determination Standards for the Jason Series of Altimeter Missions , 2010 .

[16]  Thomas Hobiger,et al.  Ray-traced troposphere slant delays for precise point positioning , 2008 .

[17]  G. Hulley,et al.  A ray‐tracing technique for improving Satellite Laser Ranging atmospheric delay corrections, including the effects of horizontal refractivity gradients , 2007 .

[18]  Jean-Michel Lemoine,et al.  A corrective model for Jason-1 DORIS Doppler data in relation to the South Atlantic Anomaly , 2006 .

[19]  Pascal Willis,et al.  Towards development of a consistent orbit series for TOPEX, Jason-1, and Jason-2 , 2010 .

[20]  C. Goad Application of digital filtering to satellite geodesy , 1977 .

[21]  Steven M. Klosko,et al.  13 Years of TOPEX/Poseidon Precision Orbit Determination and the 10-fold improvement in expected orbit accuracy , 2006 .

[22]  W. M. Kaula,et al.  Theory of Satellite Geodesy: Applications of Satellites to Geodesy , 2000 .

[23]  H. Schuh,et al.  Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium‐Range Weather Forecasts operational analysis data , 2006 .

[24]  P. Exertier,et al.  Absolute Calibration of Jason-1 and TOPEX/Poseidon Altimeters in Corsica Special Issue: Jason-1 Calibration/Validation , 2003 .

[25]  S. Gratton,et al.  JASON-1: a New Reference for Precise Orbit Determination , 2002 .

[26]  George W. Rosborough,et al.  Prediction of radiant energy forces on the TOPEX/POSEIDON spacecraft , 1992 .

[27]  Steven M. Klosko,et al.  Monthly spherical harmonic gravity field solutions determined from GRACE inter‐satellite range‐rate data alone , 2006 .

[28]  Y. Bar-Sever,et al.  One-Centimeter Orbit Determination for Jason-1: New GPS-Based Strategies , 2004 .

[29]  H. S. Hopfield Tropospheric Effect on Electromagnetically Measured Range: Prediction from Surface Weather Data , 1971 .

[30]  Bob E. Schutz,et al.  Precision orbit determination for TOPEX/POSEIDON , 1994 .

[31]  Michael R Pearlman,et al.  THE INTERNATIONAL LASER RANGING SERVICE , 2007 .

[32]  W. G. Melbourne,et al.  GPS precise tracking of TOPEX/POSEIDON: Results and implications , 1994 .

[33]  J. Mahfouf,et al.  The ecmwf operational implementation of four‐dimensional variational assimilation. III: Experimental results and diagnostics with operational configuration , 2000 .

[34]  S. Luthcke,et al.  Erratum-Modeling Radiation Forces Acting on Topex/Poseidon for Precision Orbit Determination , 1992 .

[35]  J. P. Berthias,et al.  Comportement de l'oscillateur DORIS/Jason au passage de l'anomalie sud-atlantique , 2004 .

[36]  A. Niell Global mapping functions for the atmosphere delay at radio wavelengths , 1996 .

[37]  A. Hedin MSIS‐86 Thermospheric Model , 1987 .

[38]  Pascal Willis,et al.  Towards development of a consistent orbit series for TOPEX/Poseidon, Jason-1, and Jason-2 , 2010 .

[39]  H. Schuh,et al.  Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data , 2006 .

[40]  M. Ziebart Generalized Analytical Solar Radiation Pressure Modeling Algorithm for Spacecraft of Complex Shape , 2004 .

[41]  Pascal Willis,et al.  Terrestrial reference frame effects on global sea level rise determination from TOPEX/Poseidon altimetric data , 2004 .

[42]  Pascal Willis,et al.  DPOD2005: An extension of ITRF2005 for Precise Orbit Determination , 2009 .

[43]  I. Shapiro,et al.  Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length , 1985 .

[44]  Pascal Willis,et al.  The International DORIS Service (IDS): Toward maturity , 2010 .

[45]  H. Schuh,et al.  Short Note: A global model of pressure and temperature for geodetic applications , 2007 .

[46]  Yoaz Bar-Sever,et al.  Effects of thermosphere total density perturbations on LEO orbits during severe geomagnetic conditions (Oct–Nov 2003) using DORIS and SLR data , 2005 .

[47]  Paul Cross,et al.  Thermal Force Modelling for Precise Prediction and Determination of Spacecraft Orbits , 2005 .

[48]  David E. Smith,et al.  Effects of Self-Shadowing on Nonconservative Force Modeling for Mars-Orbiting Spacecraft , 2009 .

[49]  Flavien Mercier,et al.  Jason-2 DORIS phase measurement processing , 2010 .

[50]  E. J. Christensen,et al.  TOPEX/POSEIDON mission overview , 1994 .

[51]  Z. Altamimi,et al.  ITRF2005 : A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters , 2007 .

[52]  Nikita P. Zelensky,et al.  DORIS time bias estimated using Jason-1, TOPEX/Poseidon and ENVISAT orbits , 2006 .

[53]  Richard D. Ray,et al.  A Global Ocean Tide Model From TOPEX/POSEIDON Altimetry: GOT99.2 , 1999 .

[54]  Florent Lyard,et al.  Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing ‐ comparisons with observations , 2003 .

[55]  F. LeMoine,et al.  The 1-Centimeter Orbit: Jason-1 Precision Orbit Determination Using GPS, SLR, DORIS, and Altimeter Data Special Issue: Jason-1 Calibration/Validation , 2003 .

[56]  Steven M. Klosko,et al.  The temporal and spatial characteristics of TOPEX/POSEIDON radial orbit error , 1995 .

[57]  Pascal Willis,et al.  DORIS: From orbit determination for altimeter missions to geodesy , 2006 .

[58]  Xavier Collilieux,et al.  DORIS Contribution to ITRF2005 , 2006 .